InnovExplo Inc. - Consulting Firm Mines & Exploration 560-B, 3e Avenue, Val-d'Or (Québec) J9P 1S4 Telephone: (819) 874-0447 Facsimile: (819) 874-0379 Toll-free: 1-866-749-8140 Email: <u>info@innovexplo.com</u> Web site: <u>www.innovexplo.com</u> # TECHNICAL REPORT ON THE PIVERT-ROSE PROPERTY (according to Regulation 43-101 and Form 43-101F1) ### **Project Location** Province of Quebec, Canada (NTS: 32N/16, 33C/01 and 33C/02) (UTM 409700E; 5761000N) (Zone 18, NAD 83) Prepared for #### FIRST GOLD EXPLORATION INC. 370 rue des Magnolias Laval (Québec) CANADA H7A 0A3 Phone: (514) 862-6889 Fax: (514) 904-1597 ### Prepared by: Pierre-Luc Richard, B.Sc., P.Geo. InnovExplo – Consulting Firm Val-d'Or (Québec) pierreluc.richard@innovexplo.com Carl Pelletier, B.Sc., P.Geo. InnovExplo – Consulting Firm Val-d'Or (Québec) carl.pelletier@innovexplo.com # **TABLE OF CONTENTS** | 1.0 SUMMARY (Item 3) | 5 | |---|----------------| | 2.0 INTRODUCTION AND TERMS OF REFERENCE (Item 4 | 8 | | 3.0 RELIANCE ON OTHER EXPERTS (Item 5) | 9 | | 4.0 PROPERTY DESCRIPTION AND LOCATION (Item 6) | | | 4.1 Location | | | 4.2 Mining titles status | | | 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRA | | | PHYSIOGRAPHY (Item 7) | | | 5.1 Accessibility | | | 5.2 Climate | | | 5.4 Physiography | | | 6.0 HISTORY (Item 8) | | | 7.0 GEOLOGICAL SETTING (Item 9) | | | 7.1 The Archean Superior Province | | | 7.2 The Middle and Lower Eastmain Greenstone Belt | | | 7.3 Geological Setting of the Pivert-Rose Property | 36 | | 8.0 DEPOSIT TYPES (Item 10) | 39 | | 8.1 General model for rare-element LCT-type pegmatites | 40 | | 8.1.1 General characteristics | 40 | | 8.1.2 Emplacement of pegmatite melts | | | 8.1.3 Well-studied pegmatite ore deposits8.2 Rare-element pegmatites from the Superior geological prov | | | 9.0 MINERALIZATION (Item 11) | | | 9.1 Pivert showing | | | 9.2 Rose deposit | | | 9.3 JR showing | | | 9.4 Hydro showing | | | 9.5 West-Ell showing | | | 9.6 Other occurrences | | | 10.0 EXPLORATION (Item 12) | | | 11.0 DRILLING (Item 13) | | | 11.1 Drilling on the Pivert showing | | | 11.2 Drilling on the Rose deposit | | | 12.0 SAMPLING METHOD AND APPROACH (Item 14) | | | 13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY (It | | | 14.0 DATA VERIFICATION (Item16) | | | 14.1 Historical Work | | | 14.2 First Gold Database | | | 14.2.1 First Gold Drilling | | | 14.2.3 First Gold sampling and assaying procedures | | | 14.2.4 First Gold Quality Control | 70 | | 14.2.5 InnovExplo's grab sampling | | | 15.0 ADJACENT PROPERTIES (Item 17) | | | 16.0 MINERAL PROCESSING AND METALLURGICAL TESTIN | G (Item 18) 81 | | 17.0 MII | NERAL RESOURCE AND MINERAL RESERVE ESTIMATES (Item 19) | 82 | |----------|---|----| | 17.1 | Historical and previous Mineral Resource Estimate | 82 | | 17.2 | Methodology | 82 | | 17.3 | Drill hole database | | | 17.4 | Domain interpretation | 82 | | 17.5 | Assay data, verification and treatment | 83 | | 17.6 | Grade capping and compositing | 84 | | 17.7 | Variography | 87 | | 17.8 | Metallurgical treatment | 90 | | 17.9 | Density | | | 17.10 | Block model geometry | 91 | | 17.11 | Mineralized-envelope block model | 91 | | 17.12 | Grade block model | | | 17.13 | Resource category block model | | | 17.14 | Determination of cut-off grade | | | 17.15 | Mineral Resource classification, category and definitions | | | 17.16 | Resource estimation | 93 | | 18.0 OT | HER RELEVANT DATA AND INFORMATION (Item 20) | 95 | | 19.0 IN | TERPRETATION AND CONCLUSIONS (Item 21) | 96 | | 20.0 RE | ECOMMENDATIONS (Item 22) | 98 | | | FERENCES (Item 23) | | | | SNATURE PAGE (Item 24) | | | | DDITIONAL REQUIREMENTS FOR TECHNICAL REPORTS ON DEVELOPI | | | | OPERTIES AND PRODUCTION PROPERTIES (Item 25) | | | | RTIFICATES OF AUTHORS | | | | | | Item numbers in parentheses refer to the CONTENTS OF THE TECHNICAL REPORT in the section FORM 43-101F1 - TECHNICAL REPORT of Regulation 43-101 respecting standards of disclosure for mineral projects (GAZETTE OFFICIELLE DU QUÉBEC, December 14, 2005, Vol. 137, No. 50). # **LIST OF FIGURES** | Figure 4.1 – Location of the Pivert-Rose property in the province of Québec | 10 | |---|----| | Figure 4.2 – Claims in the east part (A, B and C blocks) of the Pivert-Rose property | 13 | | Figure 4.3 – Claims in the west part (D and E blocks) of the Pivert-Rose property | 14 | | Figure 4.4 – Detailed view of the A Block of First Gold current exploration work | 15 | | Figure 5.1 – Access to the Rose, Hydro and JR showings | 29 | | Figure 5.2 – Topography and accessibility of the Pivert-Rose property | 31 | | Figure 7.1 – Map of the Superior Province showing subdivisions | 33 | | Figure 7.2 – Map showing the location of the Pivert-Rose property within the geological | | | setting of the Middle and Lower Eastmain belt | 35 | | Figure 7.3 – Geology of the Pivert-Rose property area | 38 | | Figure 8.1 – Regional zoning in fertile granites and pegmatites | 41 | | Figure 8.2 – Longitudinal fence diagram of the west to east section through the Tanco | | | pegmatite | 43 | | Figure 8.3 – Horizontal and vertical sections through the Mongolian Altai pegmatite No. 3 | 44 | | Figure 9.1 – The Pivert showing | 47 | | Figure 9.2 – The Rose deposit | 48 | | Figure 9.3 – The JR showing | 49 | | Figure 9.4 – The Hydro showing | 50 | | | | | rigure 9.5 – Example of another pegmatite occurrence in the vicinity of the Rose and Pivert | | |--|------| | showings (in this case, a road cut) | | | Figure 11.1 – Diamond drill holes conducted by First Gold on the Pivert-Rose property | | | Figure 11.2 – Diamond drill holes conducted by First Gold on the Rose deposit | | | Figure 11.3 – Diamond drill holes conducted by First Gold on the Pivert showing | | | Figure 14.1 – Photos of some of the casing locations that were verified on Pivert-Rose | | | Figure 14.2 – Drilling at the Rose deposit: | | | Figure 14.3 – Core verification at the core storage facility in Val-d'Or | | | Figure 14.4 – Path of the core from drill rig to final storage facility: | | | Figure 14.5 – Verification of grades versus sample lengths from First Gold drill holes | 69 | | Figure 14.6 – Verification of core duplicates | 70 | | Figure 14.7 – Reassays in a third Laboratory. "x" = original assay and "y" = reassay | | | Figure 15.1 – Lithium occurrences in the vicinity of the Pivert-Rose property | | | Figure 15.2 – Properties and mineral occurrences in the vicinity of the Pivert-Rose property | | | Figure 17.1 – North-facing isometric view of the mineralized zones in the Rose deposit | | | Figure 17.2 – Normal histogram of Li grade | | | Figure 17.3 – Normal histogram of Ta grade | | | Figure 17.4 – Normal histogram of Cs grade | | | Figure 17.5 – Normal histogram of Be grade | | | | | | Figure 17.6 – Normal histogram of Ga grade | | | Figure 17.7 – Normal histogram of Rb grade | | | Figure 17.8 – Li 3-D variogram within the Peg-1 Zone (major axis) | | | Figure 17.9 – Rb 3-D variogram within the Peg-1 Zone (major axis). | | | Figure 17.10 – Ta 3-D variogram within the Peg-1 Zone (major axis). | | | Figure 17.11 – Cs 3-D variogram within the Peg-1 Zone (major axis). | | | Figure 17.12 – Be 3-D variogram within the Peg-1 Zone (major axis). | | | Figure 17.13 – Ga 3-D variogram within the Peg-1 Zone (major axis) | 90 | | | | | LICT OF TABLES | | | LIST OF TABLES | | | T 0.4 0 | _ | | Table 2.1 – Conversion factors | | | Table 4.1 – List of mining titles comprising the Pivert-Rose property | | | Table 6.1 – Historical work on the Pivert-Rose property | | | Table 10.1 – Grab samples collected on the Pivert-Rose property by First Gold | | | Table 11.1 – First Gold's diamond drill holes on the Pivert showing | | | Table 11.2 – First Gold's diamond drill holes on the Rose deposit | | | Table 14.1 – Verification of casing locations and attitudes on the Rose deposit | 64 | | Table 14.2 – Verification of blanks | 71 | | Table 14.3 – Verification of core duplicates | 73 | | Table 14.4 – Samples collected by the author and independently analyzed | | | Table 17.1 – Rose Resource sensitivity with variable cut-off for all zones combined | | | Table 17.2 – Rose Resource Estimate with a cut-off grade of 0.75% Li ₂ O | | | Table 20.1 – Budget estimate for the Phase I and II work programs | | | - 23.5 25.1 244get committee for the Fridge Falle II Work programs | | | | | | LIST OF APPENDICES | | | | | | | 440 | | APPENDIX IUNITS, CONVERSION FACTORS, ABBREVIATIONS | .113 | ## 1.0 SUMMARY (Item 3) InnovExplo inc. ("InnovExplo") was contracted in April 2010 by Eric Leboeuf, then president of First Gold Exploration Inc, to complete a Technical Report ("the report") and Resource Estimate in compliance with Regulation 43-101 and Form 43-101F1 for the Pivert-Rose property ("the property") in Québec, Canada. The report is addressed to First Gold Inc ("First Gold" or "the issuer"), a Canadian exploration company listed on the TSX Venture Exchange under the symbol EFG. InnovExplo is an independent mining and exploration consulting firm based in Val-d'Or, Québec. The report was prepared for the purpose of providing an initial resource estimate for the Rose deposit on the Pivert-Rose property, as well as recommendations for an exploration program. The authors, Pierre-Luc Richard, B.Sc., P.Geo., and Carl Pelletier, B.Sc., P.Geo., wrote this report after reviewing the data in previous reports and any other information judged relevant, suitable and reliable. The authors are Qualified and Independent Persons as defined by Regulation 43-101. Pierre-Luc Richard visited the core storage facility in Val-d'Or on July 12 2010, and the property on
July 13 and 14. The southeastern boundary of the Pivert-Rose property is approximately 30 km north of the community of Nemiscau in the James Bay area of the province of Québec. The Pivert-Rose property comprises 636 active mining titles covering a total of 33,307 ha. The claims are grouped into five blocks (A to E) of contiguous or partially contiguous claims. The Pivert-Rose property is located in the northeast part of the Archean Superior Province of the Canadian Shield craton, more precisely within the southern portion of the Middle and Lower Eastmain Greenstone Belt (MLEGB). Although the MLEGB displays a wide variety of lithologies, most of the claims constituting the Pivert-Rose property are underlain by intrusives. Based on the regional geology interpretation of Moukhsil et al. (2007), most of the property is covered by syntectonic intrusions (2,710 to 2,697 Ma). Late- to post-tectonic intrusions (<2,697 Ma) are also present to a lesser extent. Mineralization recognized to date on the Pivert-Rose property includes rare-element LCT-type pegmatites (Block A) and molybdenum occurrences (Block A). An iron occurrence (Block B) is also mentioned in the government database. The Rose deposit is the most significant mineralization to date on the property. First Gold began drilling the Pivert-Rose property in late 2009. At the issuer's request, the cut-off for this report (in terms of drill holes) was established as LR-10-139, and this report therefore considers a total of 143 First Gold drill holes totalling 16,673.45 metres. Four additional holes have been drilled at the Rose deposit after the cut-off hole. Other than drilling, First Gold also performed some prospecting work on the Pivert-Rose property. Prospecting was limited to the immediate vicinities of the known Pivert showing and the Rose deposit. The work consisted of a visual reconnaissance of pegmatites and sample collection, in addition to outcrop mapping at the Rose deposit only. First Gold's exploration and drilling work since 2009 has yielded many significant drill hole intercepts that were used by InnovExplo to produce a better geological interpretation for the Rose deposit and to confirm the potential of the entire property area for new discoveries. Out of 143 drill holes at Rose, 140 returned significant mineralized values for Li, Ta, Rb, Cs, Ga or Be, and in most cases, for more than one of these elements. Mineralization is hosted within outcropping pegmatite dykes subparallel to the surface. The dykes and grades correlate well and show good continuity throughout the sections. Based on the density of the processed data, the search ellipse criteria, and specific interpolation parameters, the authors are of the opinion that the current Mineral Resource Estimate can only be classified as Inferred and Indicated resources. The Estimate follows CIM standards and guidelines for reporting mineral resources and reserves. A minimum mining width of 2 metres (true width) and a cut-off grade of 0.75% Li₂O were considered for the Mineral Resource Estimate. InnovExplo estimates that the Rose deposit has Indicated Resources of 11,436,000 tonnes grading 1.34% Li₂O, 135ppm Ta, 2,668ppm Rb, 106ppm Cs, 136ppm Be, 71ppm Ga, and Inferred Resources of 2,170,000 tonnes grading 1.27% Li₂O, 113ppm Ta, 1,529ppm Rb, 100ppm Cs, 112ppm Be, 70ppm Ga, at a cut-off grade of 0.75% Li₂O for both. The fact that the pegmatite dykes at Rose are shallow and subparallel to the surface is a significant advantage for this project and should be taken into account when further evaluating its economical potential. Although the Rose deposit is currently the most advanced area of the property in terms of exploration, three other identified showings on Block A (Pivert, JR and Hydro) appear very promising and should be further investigated by either trenching or drilling since they display similarities with the Rose deposit in terms of mineralogy, grades and thickness (according to surface observations). Field work also shows that these three showings dip gently subparallel to the surface, as is the case for Rose. JR and Hydro have not yet been drilled, but First Gold drilled three holes on Pivert in 2009. InnovExplo believes that the latter holes were oriented down-dip and therefore missed the target. Additional drilling is required as part of a drilling program in order to determine the extent of the Pivert showing. Based on the recent information obtained from the Rose deposit, the authors suggest that the drill should be oriented N206 with a dip of -60 in order to adequately test the Pivert pegmatite dyke. The West-Ell showing should be visited by First Gold's geologists to determine the extent of what has been historically described as molybdenum mineralization within veinlets crosscutting a pegmatite dyke. The dyke should be analyzed because it may be part of the same pegmatite group as the Rose, Pivert, JR and Hydro pegmatites, potentially hosting similar mineralization. InnovExplo completed an independent verification of the data (including grab sampling) and found no indication of anything in the drilling, core handling, or sampling procedures, or in the sampling methods, that could have had a negative impact on the reliability of the reported assay results. The Rose deposit is at an advanced stage of exploration and hosts significant lithium and rare-element mineralization. InnovExplo's preliminary data compilation and review of historical reports concerning the Pivert-Rose property revealed significant potential for the discovery of new lithium and rare-element pegmatites over the entire property. The property is strategically positioned in an area known to be associated with this type of mineralization. Although the Rose deposit is at an advanced stage of exploration, the sheer size of the dominantly unexplored remainder of the property leads InnovExplo to consider Pivert-Rose as an early-stage project with great potential for discovering additional mineralization. InnovExplo recommends additional work to confirm the economic potential of the Rose deposit and the rest of the Pivert-Rose property, which has seen very little exploration in the past. Lateral and depth extensions of the Rose deposit should be investigated. Perpendicular channel samples could be analyzed and professionally surveyed in order to collect information for a future resource estimate. Since the literature mentions several deposits elsewhere with holmquistite (a lithium-magnesium mineral) as a metasomatic replacement mineral along the edges of lithium-rich pegmatites, the borders of the Rose deposit pegmatites should be systematically sampled over at least one metre. If anomalous results are obtained, more samples should be taken to cover the entire metasomatized wall rock. Preliminary metallurgical testing is recommended on mineralized rocks from the Rose deposit. A composite sample of 100 kg recovered from HQ-size drill core (or from surface samples) should be used for the tests, which should include a mineralogical evaluation of the mineralization and standard characterization tests (head analysis, comminution and basic environmental testing). Following the metallurgical testing, InnovExplo recommends a pre-feasibility study to determine the potential economic viability of the mineral resources. Both open pit and underground scenarios may need to be evaluated for the Rose deposit. The pre-feasibility study would also have the objective of determining an area for bulk sampling and would include a cost and time estimate for the bulk sampling program. InnovExplo also recommends that First Gold consider drilling the Pivert, JR and Hydro showings, and perhaps West-Ell, to determine their potential. Drilling a stratigraphic fence NE and SW of the Rose deposit should also be considered in order to potentially identify other mineralized structures associated with Rose. Apart from immediately drilling the known mineralized pegmatites, a creek-sediment geochemical survey and a visual satellite photo reconnaissance program covering the entire property could be the first step in determining which portions of the property should be investigated more closely. Based on the results, systematic geological survey grids should be established and geochemistry rock samples collected. InnovExplo is of the opinion that the character of the Pivert-Rose property is of sufficient merit to justify the recommended exploration program described below. The program is divided into two (2) phases. Expenditures for the Phase I work program are estimated at C\$2,737,000 (including 15% for contingencies). Expenditures for the Phase II work program are estimated at C\$2,512,750 (including 15% for contingencies). The grand total is C\$5,249,750 (including 15% for contingencies). Phase II of the program is conditional on the success of Phase I. # 2.0 INTRODUCTION AND TERMS OF REFERENCE (Item 4 InnovExplo inc. ("InnovExplo") was contracted in April 2010 by Eric Leboeuf, then president of First Gold Exploration Inc, to complete a Technical Report ("the report") and Resource Estimate in compliance with Regulation 43-101 and Form 43-101F1 for the Pivert-Rose property ("the property") in Québec, Canada. The report is addressed to First Gold Inc ("First Gold" or "the issuer"), a Canadian exploration company listed on the TSX Venture Exchange under the symbol EFG. InnovExplo is an independent mining and exploration consulting firm based in Vald'Or, Québec. The report was prepared for the purpose of providing an initial resource estimate for the Rose deposit on the Pivert-Rose property, as well as recommendations for an exploration program. This report reviews historical work on the property, compiles all the data used to calculate the Mineral Resource Estimate herein, and recommends a program to explore for additional resources. Some data were provided by agents of First Gold (e.g., the mining titles list). InnovExplo also reviewed other sources of
information, such as government databases, for assessment reports and the status of the mining titles. An earlier InnovExplo 43-101 technical report for the property, dated September 30 2010, was also used to prepare this report. The authors, Pierre-Luc Richard, B.Sc., P.Geo., and Carl Pelletier, B.Sc., P.Geo., wrote the present report after reviewing the data in previous reports and any other information judged relevant, suitable and reliable. The authors are Qualified and Independent Persons as defined by Regulation 43-101. Technical support was provided by Marcel Naud (InnovExplo). Venetia Bodycomb of Vee Geoservices performed a linguistic revision of the document. The authors have a good understanding of mineral deposit exploration models for Archean gold deposits by virtue of having worked in such environments. The author Pierre-Luc Richard visited the core storage facility in Val-d'Or on July 12, 2010, and the property on July 13 and 14. During this time, he was able to study the mineralization and QA/QC procedures, and to hold several discussions with Jean-Sébastien Lavallée, a geologist, shareholder and First Gold's Interim President and CEO. Mr. Lavallée is also a co-vendor of the Pivert-Rose option agreements signed with First Gold (described in Item 6), and Vice President of Consul-Teck, the consulting firm in charge of the operations for the Pivert-Rose project. InnovExplo conducted a review and appraisal of the information used in the preparation of the present report and is of the opinion that the conclusions and recommendations herein are valid and appropriate considering the status of the project. The authors have fully researched and documented the conclusions and recommendations submitted in this report. The grades for Li, Ta, Rb, Cs and Be are given as parts per million (ppm) for each element. Table 2.1 provides factors to convert these values into Li_2O , Ta_2O_5 , Rb_2O , Cs_2O and BeO. Note that 10,000 ppm equals 1%. Element From То Multiply by Example 2.1530 1 ppm Li = 2.1530 ppm Li₂O Lithium Li Li₂O Tantalum Ta 1.2211 1 ppm Ta = 1.2211 ppm Ta₂O₅ Ta_2O_5 Rubidium Rb Rb_2O 1.0940 1 ppm Rb = 1.0940 ppm Rb₂O Cesium Cs 1.0600 1 ppm Cs = 1.0600 ppm Cs₂O Cs_2O BeO 2.7750 1 ppm Be = 2.7750 ppm BeO Beryllium Be Table 2.1 – Conversion factors ## 3.0 RELIANCE ON OTHER EXPERTS (Item 5) The authors, both Qualified and Independent Person as defined by Regulation 43-101, were contracted by the issuer to study technical documentation relevant to the report and to provide an initial resource estimate for the Rose deposit on the Pivert-Rose property, as well as recommendations for an exploration program for the entire property. The authors have reviewed the mining titles, their status, any agreements and technical data supplied by the issuer (or its agents), and any public sources of relevant technical information. Information about the mining titles and option agreements was supplied by Jean-Sébastien Lavallée, acting as a First Gold representative. InnovExplo is not qualified to express any legal opinion with respect to the property titles or current ownership and possible litigation. Many of the geological and technical reports for projects in the vicinity of the Pivert-Rose property were prepared before the implementation of National Instrument 43-101 in 2001 and Regulation 43-101 in 2005. The authors of such reports appear to have been qualified, and the information prepared according to standards that were acceptable to the exploration community at the time. However, the data are incomplete in some cases and do not fully meet the current requirements of Regulation 43-101. The authors of this report are therefore not responsible for information provided from such sources, although there is no known reason to believe that any information used in the preparation of this report is invalid or contains misrepresentations. The authors believe the information used to prepare the report and formulate its conclusions and recommendations is valid and appropriate considering the status of the project and the purpose for which the report is prepared. The authors, by virtue of their technical review of the project's exploration potential, affirm that the work program and recommendations presented in the report are in accordance with Regulation 43-101 and CIM technical standards. # 4.0 PROPERTY DESCRIPTION AND LOCATION (Item 6) #### 4.1 Location The southeastern boundary of the Pivert-Rose property is approximately 30 km north of the community of Nemiscau in the James Bay area of the Province of Québec. The property covers portions of NTS map sheets 32N/16, 33C/01 and 33C/02 (Figs. 4.1 and 5.1) and the approximate UTM coordinates for the geographic centre of the property are 409700E and 5761000N (Zone 18, NAD83). Figure 4.1 – Location of the Pivert-Rose property in the province of Québec #### 4.2 Mining titles status The Pivert-Rose property comprises 636 active mining titles covering a total of 33,307 ha. The claims are grouped into five blocks (A to E) of contiguous or partially contiguous claims (Figs. 4.2 and 4.3). Table 4.1 list the active mining titles. Figure 4.4 shows a more detailed view of Block A where First Gold is conducting all its current exploration work and where some of the claims were acquired through an option agreement. Figure 6.1 shows the overall location of the claim block boundaries. On August 19, 2009, an agreement was reached between First Gold ("the Purchaser") and Jean-Raymond Lavallée, Jean-Sébastien Lavallée and Fiducie Familiale St-Georges (together "the Vendors") regarding thirteen (13) claims that constitute the Pivert-Rose property. The Pivert showing and the Rose deposit occur within those 13 claims. Claims involved in the option agreement are indicated in the last column of Table 4.1 and shown in figures 4.2 and 4.4. The agreement stipulates that First Gold owns an option to acquire an 85% right, title and interest in and to the Vendors' claims. A net smelter royalty (NSR) of 2% was granted to the Vendors. First Gold has the opportunity to purchase half of the royalty for C\$1,000,000. In order to obtain an 85% right, First Gold must pay a total of C\$30,000 and a total of 5,000,000 common shares of the company, as well as conduct a minimum of C\$1,800,000 in exploration expenditures distributed over the first three years of the option. The option agreement also stipulates that Consul-Teck will conduct all the work on the property during those three years. In the eventuality that a resource estimate emerges from the Pivert-Rose property demonstrating at least 125,000 tonnes LiO₂ with a minimum cut-off grade of 0.8% LiO₂ for a minimum total of 220,000,000 pounds of LiO₂, First Gold must give a total of 3,000,000 additional shares of the company to the Vendors. First Gold is required to complete the initial payments and share issue as well as the First and Second Anniversary commitments; otherwise the claims will revert to the Vendors. On October 21, 2010, First Gold announced that it has fulfilled all its obligations under the agreement dated August 19, 2009, and has thus acquired an undivided 85% interest in the Pivert-Rose property. First Gold added that all required cash payments, share issuances and exploration expenditures were made within the stipulated timeframe. On November 29, 2010, First Gold announced the closing of a transaction with Jean-Sébastien Lavallée, a director and the interim president and chief executive officer of First Gold, Jean-Raymond Lavallée, and Fiducie Familiale St-Georges (together the "Vendors") to increase its interest in the Pivert-Rose project from 85% to 100% in consideration of a cash payment of \$225,000 and the issuance of 7,500,000 common shares of First Gold. The Vendors will also retain the previously discussed 2% net smelter return royalty on the property, half of which (1%) can be bought back by First Gold for \$1,000,000. According to the GESTIM database (Québec's claim management system), 541 mining titles comprising the Pivert-Rose property are currently registered to First Gold; 56 mining titles are registered to Jean-Sébastien Lavallée and 36 to Jean Raymond Lavallée. However, an agreement was signed between First Gold, Jean-Raymond Lavallée and Jean-Sébastien Lavallée on September 19 of 2010, stipulating that First Gold owns 100% of all mining titles and that those claims were map-designated for First Gold. The status of these claims had not yet been completely updated in the government system at the time of writing this report. Other then what is discussed in the discussed transactions, no liens or charges appear to be registered against the Pivert-Rose property. All lands seem to be in good standing according to the GESTIM database (Québec's claim management system), although a total of 93 active mining titles are affected by either hydroelectric facilities or power lines (Figs. 4.2 to 4.4 and Table 4.1). InnovExplo is not qualified to express any legal opinion with respect to the property titles or current ownership and possible litigation. Figure 4.2 – Claims in the east part (A, B and C blocks) of the Pivert-Rose property Figure 4.3 – Claims in the west part (D and E blocks) of the Pivert-Rose property Figure 4.4 – Detailed view of the A Block where First Gold is conducting all its current exploration work and where some of the claims were acquired through option agreements Table 4.1 – List of mining titles comprising the Pivert-Rose property | Title Number (| Claim Block NTS | Ctatus | Araa (ba) | Pagistration data | Evairation data | Registered Owner | Credit declared | Required work for renewal | Commont | |----------------|-----------------|--|-----------|-------------------|-----------------|--------------------------------------|-----------------|---------------------------|--| | | | - | | - | _ | •
 | † · | | | 2188276 A | | Active | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached | | 2188277 A | | Active | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached | | 2188278 A | | Active | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached | | 2188279 A | A 33C01 | | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached | | 2188280 A | A 33C01 | _ | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached | | 2188281 A | A 33C01 | Active | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached; Affected by hydroelectric facilities | | 2188282 A | | _ | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached; Affected by hydroelectric facilities | | 2188283 A | A 33C01 | | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached | | 2188284 A | A 33C01 | 1 | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Royalty attached | | 2188285 A | A 33C01 | _ | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Royalty attached | | 2188286 A | | Active | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | , , | | 2188287 A | | Active | 53.0 | 14/09/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Royalty attached | | 2188288 A | A 33C01 | Active | 53.0 | 14/09/2009 | 13/09/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Royalty attached; Affected by hydroelectric facilities | | 2193368 A | A 33C01 | Active | 53.0 | 04/11/2009 | 03/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193369 A | A 33C01 | Active | 53.0 | 04/11/2009 | 03/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193370 A | A 33C01 | Active | 53.0 | 04/11/2009 | 03/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193605 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193606 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193607 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193608 A | A 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193609 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193610 A | A 33C01 | | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193611 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Affected by energy transport line | | 2193612 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Affected by energy transport line | | 2193613 A | | _ | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Amedica by energy transportant | | 2193614 A | | 1 | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Affected by hydroelectric facilities | | 2193615 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Affected by hydroelectric facilities | | 2193616 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Affected by hydroelectric facilities | | 2193617 A | | | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Arrected by Hydroelectric racinges | | 2193618 A | A 33C01 | | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193619 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - ş
- \$ | 135.00 \$ | | | 2193620 A | A 33C01 | | 53.0 | 05/11/2009 | | · | - ş
- \$ | 135.00 \$ | | | | | Active | | | | 100% Jean-Sébastien Lavallée (19952) | | | | | 2193621 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Afficiated by a complete control by a | | 2193622 A | | 1 | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | · | Affected by energy transport line | | 2193623 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Affected by energy transport line | | 2193624 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | Affected by energy transport line | | 2193625 A | | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193626 A | A 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193627 A | A 33C01 | | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193628 A | | | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193629 A | A 33C01 | 1 | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | | | 2193630 A | A 33C01 | _ | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193631 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193632 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193633 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193634 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193635 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193636 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193637 A | A 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193638 A | 22001 | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | | | | | | | | | | | List of mining titles of | | | | |--------------|---|--------|--------|------|------------|------------|--------------------------------------|-----------------|---------------------------|---| | Title Number | | | _ | | | | Registered Owner | Credit declared | Required work for renewal | Comment | | 2193639 | A | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193640 | A | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193641 | A | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193642 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193643 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193644 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean-Sébastien Lavallée (19952) | - \$ | 135.00 \$ | | | 2193645 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193646 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193647 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193648 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193649 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193650 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193651 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193652 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193653 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193654 | A | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193655 | Α | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193656 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193657 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193658 | Α | 33C01 | Active | 53.0 | 05/11/2009 | 04/11/2011 | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | Affected by energy transport line | | 2193659 | Α | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | , 3, | | 2193660 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193661 | | 33C01 | _ | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193662 | | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193663 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - Ś | 135.00 \$ | | | 2193664 | | 33C01 | | 53.0 | 05/11/2009
| | 100% Jean Raymond Lavallée (3379) | - \$ | | Affected by energy transport line | | 2193665 | | | Active | 53.0 | | | 100% Jean Raymond Lavallée (3379) | - Ś | | Affected by energy transport line | | 2193666 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | , | | 2193667 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - Ś | 135.00 \$ | | | 2193668 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193669 | | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - Ś | 135.00 \$ | | | 2193670 | | 33C01 | _ | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193671 | | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193672 | | 33C01 | _ | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193673 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | | Affected by energy transport line | | 2193674 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | | Affected by energy transport line | | 2193675 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - Ś | 135.00 \$ | | | 2193676 | | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | · · | Affected by hydroelectric facilities | | 2193677 | | | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | a medica of infanocice and radinaes | | 2193678 | | 33C01 | Active | 53.0 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - \$ | 135.00 \$ | | | 2193679 | | 33C01 | _ | 52.9 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - ş
- \$ | 135.00 \$ | | | 2193680 | | | Active | 52.9 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - ş | 135.00 \$ | | | 2193681 | | | Active | 52.9 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - 5 | † | Affected by energy transport line | | 2193682 | | | Active | 52.9 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - ş | | Affected by energy transport line | | 2193683 | | | Active | 52.9 | 05/11/2009 | | 100% Jean Raymond Lavallée (3379) | - Ş | 135.00 \$ | Affected by energy transport line | | 2219125 | | | Active | 53.2 | 22/04/2010 | | First Gold Exploration inc. (81107) | - ş | 1,200.00 \$ | ranected by energy transport line | | 2219125 | | | Active | 53.2 | 22/04/2010 | | First Gold Exploration inc. (81107) | - ş
- \$ | 1,200.00 \$ | | | 2219126 | | | Active | 53.2 | 22/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2219127 | | | Active | 53.2 | 22/04/2010 | | First Gold Exploration inc. (81107) | - 3 | 1,200.00 \$ | | | 2219128 | | | Active | 53.2 | | | First Gold Exploration Inc. (81107) | - \$ | 1,200.00 \$ | | | 2219129 | D | 25IATP | Active | 53.1 | 22/04/2010 | 21/04/2012 | rnst doid exploration inc. (81107) | - \$ | 1,200.00 \$ | | | Title Number Claim Book NTS Salbus Assoc Salbest Equipation date Equipation Control Co | | al : al I | | a | | | | List of filling titles t | | | | |---|---------|-----------|-------|--------|------|------------|------------|-------------------------------------|------|---|---------| | 2291313 S. NILA ACUV S.1. 22004200 1.000/2002 1.000/2002 1.0000.00 S. 1.2000.0 1.2000 | | | | | | - | • | | | | Comment | | 229133 B 3916 Active 33.1 22/04/2010 21/04/2012 12/04/2017 5 1,200.0 S | | | | | | | | | - \$ | , , | | | 2291313 B | 2219131 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2291348 B 2016 Active 531 22/04/2001 21/04/2017 rest Got Exploration inc. (8107) S 1,200.0 1,2 | 2219132 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2291338 B. 20x16 Active 53.1 22/04/2010 21/04/2012 intris Gold Engloration inc. (\$1107) \$ 1,200.0 \$ 1, | 2219133 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 229138 B SANIS Active SSI 22/04/200 21/04/2012 Inst Gold Exploration Inc. (8107) \$ 1,200.0 \$ | 2219134 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 22191378 22194 Active 5.11 22264/2010 22/04/2012 12/04/2012 First Gold Engineration Inc. (28107) - 5 1,200.00 5 | 2219135 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2291318 B. 23016 Active S.1 226/4/2010 22/40/2010
22/40/2010 22/4 | 2219136 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219198 SANIA Active SAI 22/04/2010 21/04/2010 First Gold Exploration inc. (SELDT) S 1,200.00 \$ | 2219137 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2291948 33116 Active 53.1 220/4/2000 210/4/2001 Firs Gold Exploration inc. (\$1507) \$ 1.200.00 \$ | 2219138 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 221914 S 3015 Active 5.1 22004/2002 21004/2002 First Gold Engloration (m. (81307) 5 1,200,00 5 1,200 | 2219139 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 221914 S 3015 Active 5.1 22004/2002 21004/2002 First Gold Engloration (m. (81307) 5 1,200,00 5 1,200 | 2219140 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2299140 DNIS Active S3.1 2204/2001 2204/2002 19ris Gold Exploration inc. (8107) S 1,200.0 S | | | 32N16 | Active | | | | | - \$ | | | | 2219148 S. 2016 Active S.3.1 22/04/200 21/04/2012 First Gold Exploration inc. (SELD7) S. 1,200.00 S. | | | | | | | | | - Ś | , , | | | 2219146 S. 2016 Active S.3.1 22/04/2000 21/04/2012 First Gold Exploration inc. (SELD7) S. 1,200.00 S. | | | | _ | | | | | - \$ | | | | 2219145 B 32416 Active 53.1 2204/2010 21/04/2012 First Gold Exploration inc. (81107) \$ 1,200.00 \$ 1,200. | | | | | | | | | - \$ | | | | 2219146 R 23116 Active 531 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) 5 1,200.00 5 | | | | | | | | | | | | | 2239147 B 33NIS Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) S 1,200.00 S | | | - | | | , , , | | | т. | | | | 2219148 A 33NIS Active 53.1 22/04/2010 72/04/2012 First Gold Exploration Inc. (81107) S 1,200.00 S | | | | | | | | | | | | | 2219159 A 23N15 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | _ | | | | | | | | | 2219150 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | | , , | | | 2219151 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | - | | | | | . , , | Ÿ | | | | 2219152 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | | | | | 2219158 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | Y | | | | 2219154 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | т. | , | | | 2219155 A 33C0 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ | | | | | | | | | | | | | 2219156 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ \$ 1,200.00 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | | | | | | | | т. | | | | 2219157 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | | | | | 2219158 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | - | | | | | | Ÿ | | | | 2219159 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219160 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219161 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219162 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219163 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219163 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219165 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219166 A 33001 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219166 A 33001 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219168 A 33001 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 3301 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219169 B 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219170 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B
32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04 | | | | _ | | | | | | , , | | | 221916 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.0 \$ | | | | | | | | . , | Ÿ | | | | 2219161 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | | | | | 2219162 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219164 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219165 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219166 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219166 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219167 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219169 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | _ | | | | | Y | | | | 2219163 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219164 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219165 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219166 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219167 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219169 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219170 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | - \$ | ,, | | | 2219164 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219165 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219166 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219167 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219169 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219170 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | Ÿ | | | | 2219165 A 32N16 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219166 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219167 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219169 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219170 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | _ | | | | | - \$ | | | | 221916 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219167 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219169 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219170 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A
32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | т | , , | | | 2219167 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219169 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | - | | | | | . , , | - \$ | | | | 2219168 A 33C01 Active 53.0 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 135.00 \$ 2219170 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219166 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219176 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219167 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219170 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219168 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219171 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219172 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219169 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219170 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219171 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219173 B 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A
32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219172 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219174 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219173 | В | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219175 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219174 | A | 32N16 | Active | 53.1 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219176 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219175 | А | 32N16 | Active | 53.1 | 22/04/2010 | | | - \$ | 1,200.00 \$ | | | 2219177 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | 2219176 | Α | 32N16 | Active | 53.1 | 22/04/2010 | | | - \$ | 1,200.00 \$ | | | 2219178 A 32N16 Active 53.1 22/04/2010 21/04/2012 First Gold Exploration inc. (81107) - \$ 1,200.00 \$ | | | | | | | | | - \$ | | | | | 2219178 | Α | 32N16 | Active | 53.1 | 22/04/2010 | | | - \$ | 1,200.00 \$ | | | | | | | | 53.1 | | | | - \$ | | | | | al : al I | | a | | | | List of filling titles t | | | | |---------|-----------|-------|--------|------|------------|------------|-------------------------------------|-----------------|---------------------------|---------| | | | | | | - | | Registered Owner | Credit declared | Required work for renewal | Comment | | 2219180 | Α | 32N16 | Active | 53.0 | 22/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219181 | Α | 32N16 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219182 | Α | 32N16 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219183 | Α | 32N16 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219184 | Α | 32N16 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219185 | Α | 32N16 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219186 | | | Active | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219187 | | | Active | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219188 | | | Active | 53.0 | | | First Gold Exploration inc. (81107) | - Ś | 135.00 \$ | | | 2219189 | | | Active | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219190 | | 33C01 | | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219191 | | | | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219191 | | 33C01 | Active | 53.0 | | | First Gold Exploration Inc. (81107) | - 5 | 135.00 \$ | | | 2219192 | | 33C01 | _ | 53.0 | | | First Gold Exploration Inc. (81107) | - ş
- \$ | 135.00 \$ | | | | | | | | | | | т. | · | | | 2219194 | | | Active | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219195 | | | Active | 53.0 | | , , , , | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219196 | | | Active | 53.0 | 22/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219197 | | | | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219198 | | | | 53.0 | 22/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219199 | | 33C01 | Active | 53.0 | | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219200 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219201 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219202 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219203 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219204 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219205 | Α | 33C01 | Active | 53.0 | 22/04/2010 | 21/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2219853 | В | 32N16 | Active | 53.2 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219854 | В | 32N16 | Active | 53.2 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219855 | В | 32N16 | Active | 53.2 | | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2219856 | | | Active | 53.2 | 23/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2219857 | | | Active | 53.1 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219858 | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219859 | | | Active | 53.1 | 23/04/2010 | , , , , , | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219860 | | | Active | 53.1 | | | First Gold Exploration Inc. (81107) | - \$ | 1,200.00 \$ | | | 2219861 | | | Active | 53.1 | 23/04/2010 | | First Gold Exploration Inc. (81107) | - ş | 1,200.00 \$ | | | 2219862 | | | Active | 53.1 | 23/04/2010 | | First Gold Exploration Inc. (81107) | - 5 | 1,200.00 \$ | | | 2219862 | | - | Active | | | | . , , | - \$
- \$ | 1,200.00 \$ | | | | | | | 53.1 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , . | | | 2219864 | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | Y | 1,200.00 \$ | | | 2219865 | | | Active | 53.1 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219866 | | | Active | 53.1 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219867 | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219868 | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219869 | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219870 | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219871 | | 32N16 | Active | 53.1 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219872 | В | 32N16 | Active | 53.1 | 23/04/2010 | 22/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219873 | В | 32N16 | Active | 53.1 | 23/04/2010 | 22/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219874 | В | 32N16 | Active | 53.1 | 23/04/2010 | 22/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219875 | В | 32N16 | Active | 53.1 | 23/04/2010 | 22/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219876 | | | Active | | | | First Gold Exploration inc. (81107) | - \$ | | | | | | 0 | | | | ,,, | | Y | _,c v | | | | 61 1 51 1 | =^ | la | | | | List of filling titles t | | | | |---------|-----------|-------|------------------|------|------------|--------------|---|-----------------|---------------------------|---------| | | | | | | _ | _ | Registered Owner | Credit declared | Required work for renewal | Comment | | 2219877 | | | Active | 53.0 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219878 | | | Active | 53.0 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | -/ | | | 2219879 | | | Active | 53.0 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2219880 | | 32N16 | Active | 53.0 | 23/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2219881 | В | 32N16 | Active | 53.0 | 23/04/2010 | 22/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2219882 | В | 32N16 | Active | 53.0 | 23/04/2010 | 22/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2220408 | С | 33C01 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220409 | С | 33C01 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220410 | С | 33C01 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220411 | С | 33C01 | Active | 53.0 | 26/04/2010 |
25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220412 | С | 33C01 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220413 | С | 33C01 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220414 | С | 33C01 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220415 | С | 33C01 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220416 | С | 33C01 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220417 | С | 33C01 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220418 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220419 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220420 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220421 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220422 | | | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220423 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220423 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 135.00 \$ | | | 2220424 | | 33C01 | Active | 53.0 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - ş
- \$ | 135.00 \$ | | | 2220425 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - ş
- \$ | 135.00 \$ | | | 2220426 | | | | | 26/04/2010 | | . , | T . | | | | 2220427 | | | Active
Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) First Gold Exploration inc. (81107) | - \$
- \$ | 135.00 \$
135.00 \$ | | | 2220428 | _ | | | 53.0 | -, - , | | | т. | | | | | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2220430 | | | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220431 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220432 | | 33C01 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220433 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220434 | | | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220435 | | | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220436 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220437 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2220438 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220439 | | 33C01 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220440 | | | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220441 | С | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220442 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220443 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220444 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220445 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220446 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220447 | С | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220448 | | 33C02 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220449 | | 33C02 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220450 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220451 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2220431 | Ĭ | JJC02 | , tell ve | 55.0 | 20,04,2010 | 23, 04, 2012 | st co.a Exploration me. (01107) | - ۷ | 155.00 \$ | | | 2220454 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220455 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220456 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220457 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220458 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | Required work for renewal \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ | Comment | |---|--|---------| | 2220453 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220454 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220455 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220456 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220457 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220458 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ \$ 135.00 \$ \$ \$ \$ 135.00 \$ \$ \$ \$ 135.00 \$ \$ \$ \$ 135.00 \$ \$ \$ \$ \$ 135.00 \$ \$ \$ \$ \$ 135.00 \$ \$ \$ \$ \$ 135.00 \$ \$ \$ \$ \$ 135.00 \$ \$ \$ \$ \$ \$ 135.00 \$ \$ \$ \$ \$ \$ \$ 135.00 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | | 2220454 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220455 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220456 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220457 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220458 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ | | | 2220455 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220456 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220457 C 33C02 Active 53.0 26/04/2010
25/04/2012 First Gold Exploration inc. (81107) - 2220458 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ | | | 2220456 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220457 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220458 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ | | | 2220457 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220458 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ 135.00 \$ \$ 135.00 \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ \$ 135.00 \$ \$ | | | 2220458 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$ | | | 2220459 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$ | | | 2220460 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$ | | | 2220461 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$
\$ 135.00 \$
\$ 135.00 \$ | | | 2220462 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$
\$ 135.00 \$ | | | 2220463 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220464 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | | | | 2220465 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | | | | | 2220466IC 33C02 Active | \$ 135.00 \$ | | | | \$ 135.00 \$ | | | 2220467 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | | \$ 135.00 \$ | | | | \$ 135.00 \$ | | | 2220470 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220471 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220472 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220473 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220474 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220475 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220476 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220477 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220478 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220479 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220480 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220498 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220499 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220500 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220501 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220502 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220503 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220504 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220505 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220506 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220507 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220508 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) - | \$ 135.00 \$ | | | 2220509 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | 2220510 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | 2220511 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | 2220512 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | 2220513 C 33C01 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | | \$ 135.00 \$ | | | 2220515 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | | \$ 135.00 \$ | | | 2220517 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | 2220518 C 33C02 Active 53.0 26/04/2010 25/04/2012 First Gold Exploration inc. (81107) | \$ 135.00 \$ | | | | al 1 al 1 | | la | | | | List of filling titles t | | | | |---------|-----------|-------|--------|------|------------|------------|-------------------------------------|-----------------|---------------------------|---------| | | | | | | _ | _ | Registered Owner | Credit declared | Required work for renewal
| Comment | | 2220519 | _ | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220520 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2220521 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220522 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220523 | | | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220524 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220525 | _ | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220526 | | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220527 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220528 | | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220529 | | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220530 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220531 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220532 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220533 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220534 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220535 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220536 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220537 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220538 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220539 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220540 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220541 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220542 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220543 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220544 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220545 | С | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220546 | С | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220547 | С | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220548 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220549 | С | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220550 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2220551 | | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 135.00 \$ | | | 2220552 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221268 | | 32N16 | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221269 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221270 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221271 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221272 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221273 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221274 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221274 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221275 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 1,200.00 \$ | | | 2221277 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221277 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 1,200.00 \$ | | | 2221278 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - ş | 1,200.00 \$ | | | 2221273 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 1,200.00 \$ | | | 2221280 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - ş
- \$ | 1,200.00 \$ | | | 2221281 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration Inc. (81107) | - ş | 1,200.00 \$ | | | 2221282 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - ş
- \$ | | | | 2221283 | ט | PINTO | Active | 53.1 | 20/04/2010 | 23/04/2012 | rnscoolu exploration inc. (81107) | - > | 1,200.00 \$ | | | Tial - Normalis | Claim Black | LITC | C4 - 4 | | | | besides to mining titles t | | | | |-----------------|-------------|--------|---------|------|------------|------------|-------------------------------------|-----------------|---------------------------|---------| | | | | _ | | | | Registered Owner | Credit declared | Required work for renewal | Comment | | 2221284 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221285 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2221286 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | / | | | 2221287 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2221288 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221289 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221290 | | | Active | 53.1 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221291 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221292 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221293 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221294 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2221295 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221296 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221297 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221298 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221299 | | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221300 | | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2221301 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221302 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221303 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221304 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221305 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221306 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221307 | c 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221308 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221309 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221310 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221311 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221312 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221313 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221314 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221315 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221316 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107)
| - \$ | 135.00 \$ | | | 2221317 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221318 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221319 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221320 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221321 | c 3 | 33C02 | Active | 53.0 | 26/04/2010 | 25/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221322 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221323 | C 3 | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221324 | c i | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221325 | C S | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221326 | | 33C02 | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221327 | | 33C02 | | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221328 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221329 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2221330 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221331 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2221332 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221333 | | | Active | 53.0 | 26/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | -221333 | · . | JJ CU2 | , touve | 55.0 | 20/04/2010 | 23,04,2012 | Joid Exproration Inc. (0110/) | - y | 133.00 \$ | | | | | | a | | | | List of filling titles t | | | | |------------------------|-----|-------|--------|------|------------|------------|-------------------------------------|-----------------|---------------------------|---------| | | | | | | - | | Registered Owner | Credit declared | Required work for renewal | Comment | | 2221867 D | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221868 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221869 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221870 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221871 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221872 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221873 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221874 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221875 D |) : | 32N14 | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221876 D | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221877 D | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2221878 D | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221879 D | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221880 D | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2221881 D | - | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221881 D | | | Active | 53.1 | | | | - ş
- \$ | 1,200.00 \$ | | | | | | | | | | First Gold Exploration inc. (81107) | т. | | | | 2221883 D | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221884 D | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221885 D | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221886 D | | | Active | 53.1 | 27/04/2010 | -, -, - | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221887 D | - | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221888 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221889 D |) | 32N14 | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221890 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221891 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221892 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221893 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221894 D |) | 32N14 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221895 E | | 32N15 | Active | 53.2 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221896 E | | 32N15 | Active | 53.2 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221897 E | | 32N15 | Active | 53.2 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221898 E | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - Ś | 1,200,00 \$ | | | 2221899 E | - | | Active | 53.1 | 27/04/2010 | -, -, - | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221900 E | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221900 E | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2221901 E | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221902 E | | _ | Active | 53.1 | 27/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 1,200.00 \$ | | | 2221903 E | - | | Active | 53.1 | | | First Gold Exploration Inc. (81107) | - 5 | 1,200.00 \$ | | | 2221904 E
2221905 E | | | _ | | 27/04/2010 | | | - \$
- \$ | | | | | - | | Active | 53.1 | | | First Gold Exploration inc. (81107) | | 1,200.00 \$ | | | 2221906 E | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221907 E | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221908 E | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221909 E | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221910 E | | | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221911 E | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221912 E | - | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221913 E | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221914 E | | 32N15 | Active | 53.1 | | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221915 E | | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221916 E | T | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | | al : 51 1 | | la | | | | List of filling titles t | | | | |---------|-----------|----------------|--------|------|------------|------------|-------------------------------------|-----------------|---------------------------|-----------------------------------| | | | | | | _ | _ | Registered Owner | Credit declared | Required work for renewal | Comment | | 2221917 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2221918 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | -/ | | | 2221919 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2221920 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2221921 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221922 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221923 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221924 | E | 32N15 | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221925 | E | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221926 | E . | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221927 | E . | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221928 | E | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221929 | E | 32N15 | Active | 53.1 |
27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221930 | E | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221931 | E | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221932 | E | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221933 | E . | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221934 | E . | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221935 | D . | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221936 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221937 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221938 | D | 32N15 | Active | 53.1 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221939 | | 32N15 | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1.200.00 S | | | 2221940 | D | 32N15 | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2221941 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221942 | | | Active | 53.1 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2221943 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221944 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221945 | | | | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | · | | | 2221946 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221947 | | 33C02 | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221948 | | 33C02 | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221949 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 135.00 \$ | | | 2221950 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221951 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221952 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221953 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221954 | | 33C02 | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221955 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221956 | | 33C02 | Active | 53.0 | 27/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 135.00 \$ | | | 2221930 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - 3 | 135.00 \$ | | | 2221957 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration Inc. (81107) | - ş
- \$ | 135.00 \$ | | | 2221958 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration Inc. (81107) | - \$
- \$ | 135.00 \$ | | | 2221959 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 135.00 \$ | | | 2221960 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration Inc. (81107) | - \$
- \$ | 135.00 \$ | | | 2221961 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 135.00 \$ | | | 2221962 | | 33C02
33C02 | | | | | | - \$
- \$ | · | | | | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | т | 135.00 \$ | | | 2221964 | | 33C02 | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221965 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221966 | D | 33C02 | Active | 53.0 | 27/04/2010 | 26/04/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | Tial - Normalis | Claim Diad | NITC | C4 - 4 | | | | besides to mining titles t | | | | |-----------------|------------|--------|--------|------|------------|--------------|-------------------------------------|-----------------|---------------------------|---------| | | | | _ | | | | Registered Owner | Credit declared | Required work for renewal | Comment | | 2221967 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221968 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2221969 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2221970 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2221971 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221972 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221973 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221974 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2221975 | | | Active | 53.0 | 27/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | | | 2223904 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2223905 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2223906 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223907 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223908 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223909 | E | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223910 | | 32N14 | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223911 | | 32N14 | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223912 | E | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223913 | E | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223914 | D | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223915 | D | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223916 | D | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223917 | D | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223918 | D | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223919 | D | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223920 | D | 32N14 | Active | 53.2 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223921 | D | 32N14 | Active | 53.1 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223922 | D | 32N14 | Active | 53.1 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223923 | D | 32N14 | Active | 53.1 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223924 | D | 32N14 | Active | 53.1 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223925 | D | 32N14 | Active | 53.1 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223926 | D | 32N14 | Active | 53.1 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223927 | D | 32N14 | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223928 | D | 32N14 | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223929 | D | 32N14 | Active | 53.1 | 29/04/2010 | 28/04/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223930 | D | 32N14 | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2223931 | | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223932 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | | | | 2223933 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | <u> </u> | | | 2223934 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223935 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2223936 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2223937 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2223938 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223939 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration inc. (81107) | - Ś | 1,200.00 \$ | | | 2223939 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | | | | 2223941 | | | Active | 53.2 | 29/04/2010 | | First Gold Exploration Inc. (81107) | - \$ | 1,200.00 \$ | | | 2223941
| F | | Active | 53.2 | 29/04/2010 | | First Gold Exploration Inc. (81107) | - ş | <u> </u> | | | 2223942 | F | | Active | 53.1 | 29/04/2010 | | First Gold Exploration Inc. (81107) | - · · | 1,200.00 \$ | | | 2223943 | | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - ş | 1,200.00 \$ | | | 2223944 | L | 25INT2 | ACTIVE | 55.1 | 29/04/2010 | 20/ 04/ 2012 | i not doid exproration inc. (81107) | - \$ | 1,200.00 \$ | | | Tial - November | Claim Black | NITC | C1-1 | | | | besides to mining titles t | | | | |-----------------|-------------|--------|--------|------|------------|------------|--|-----------------|---------------------------|--| | Title Number | Claim Block | | _ | | | | Registered Owner | Credit declared | Required work for renewal | Comment | | 2223945 | E | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223946 | | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | , | | | 2223947 | | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223948 | E | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223949 | E | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223950 | | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2223951 | | | Active | 53.1 | 29/04/2010 | | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2234294 | | 33C02 | Active | 53.0 | 18/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2234295 | | 33C02 | Active | 53.0 | 18/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2234296 | | 33C02 | Active | 53.0 | 18/05/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by energy transport line | | 2234761 | В | 32N16 | Active | 53.1 | 20/05/2010 | 19/05/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2234762 | В | 32N16 | Active | 53.1 | 20/05/2010 | 19/05/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2234763 | В | 32N16 | Active | 53.1 | 20/05/2010 | 19/05/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2234764 | В | 32N16 | Active | 53.1 | 20/05/2010 | 19/05/2012 | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2234765 | В | 32N16 | Active | 53.1 | 20/05/2010 | 19/05/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2234766 | В | 32N16 | Active | 53.1 | 20/05/2010 | 19/05/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2234767 | В | 32N16 | Active | 53.1 | 20/05/2010 | 19/05/2012 | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2234768 | В | 32N16 | Active | 53.1 | 20/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2234769 | | | Active | 53.1 | 20/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2234770 | | | Active | 53.1 | 20/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2235670 | | - | Active | 53.0 | 31/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2235671 | | | Active | 53.0 | 31/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2235672 | | | Active | 53.0 | 31/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2235673 | | | Active | 53.0 | 31/05/2010 | | First Gold Exploration Inc. (81107) | - \$ | | Affected by energy transport line Affected by energy transport line | | 2235674 | | | Active | 53.0 | 31/05/2010 | | First Gold Exploration Inc. (81107) | - \$ | | Affected by energy transport line | | 2235675 | | | Active | 53.0 | 31/05/2010 | | First Gold Exploration Inc. (81107) | - ş
- \$ | | Affected by energy transport line Affected by energy transport line | | 2235676 | | 33C01 | Active | 53.0 | 31/05/2010 | | First Gold Exploration inc. (81107) | - 3 | | Affected by energy transport fine Affected by hydroelectric facilities | | 2235676 | | 33C01 | Active | 53.0 | 31/05/2010 | | First Gold Exploration Inc. (81107) | - \$ | | | | | | | | | , , | | | - \$ | | Affected by hydroelectric facilities | | 2235678 | | 33C01 | Active | 53.0 | 31/05/2010 | | First Gold Exploration inc. (81107) | Ŷ | | Affected by hydroelectric facilities | | 2235679 | | | Active | 53.1 | 31/05/2010 | | First Gold Exploration inc. (81107) | Y | | Affected by energy transport line | | 2235680 | | | Active | 53.1 | 31/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2235681 | | | Active | 53.1 | 31/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2235682 | | | Active | 53.1 | 31/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2235683 | | - | Active | 53.0 | 31/05/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236209 | | | Active | 53.1 | 03/06/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236210 | E | | Active | 53.1 | 03/06/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236682 | С | 33C01 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by energy transport line | | 2236683 | С | 33C01 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by energy transport line | | 2236684 | С | 33C01 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by energy transport line | | 2236685 | С | 33C01 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by energy transport line | | 2236686 | С | 33C01 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by energy transport line | | 2236687 | С | 33C01 | Active | 53.0 | 04/06/2010 | | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by energy transport line | | 2236688 | С | 33C01 | Active | 53.0 | 04/06/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236704 | В | 32N16 | Active | 53.1 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236705 | В | 32N16 | Active | 53.1 | 04/06/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236706 | | | Active | 53.1 | 04/06/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236707 | | | Active | 53.1 | 04/06/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236708 | | | Active | 53.1 | 04/06/2010 | | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236709 | | | Active | 53.1 | 04/06/2010 | | First Gold Exploration Inc. (81107) | _ ¢ | | Affected by energy transport line | | 2236710 | | | Active | 53.1 | 04/06/2010 | | First Gold Exploration Inc. (81107) | - ş | | Affected by energy transport line | | 2230/10 | U | JZ1110 | ACTIVE | 33.1 | 04/00/2010 | 03/00/2012 | i ii st doid Exproration IIIc. (01107) | - > | 1,200.00 \$ | Arrected by energy transport inte | | Title Number | Claim Block | NTS | Status | | | | Registered Owner | | Required work for renewal | | |--------------|-------------|-------|--------|------|------------|------------|-------------------------------------|------|---------------------------|--------------------------------------| | 2236711 | В | 32N16 | Active | 53.1 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2236712 | В | 32N16 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | | Affected by energy transport line | | 2236713 | В | 32N16 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2236714 | В | 32N16 | Active | 53.0 | 04/06/2010 | 03/06/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2242429 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242430 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242431 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242432 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242433 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242434 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2242435 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2242436 | A | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | -
\$ | 1,200.00 \$ | Affected by energy transport line | | 2242437 | A | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242438 | A | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242439 | A | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242440 | Α | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2242441 | A | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2242442 | | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2242443 | A | 32N16 | Active | 53.1 | 27/07/2010 | 26/07/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2244690 | В | 32N16 | Active | 53.1 | 05/08/2010 | 04/08/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2244691 | В | 32N16 | Active | 53.1 | 05/08/2010 | 04/08/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | Affected by energy transport line | | 2244692 | A | 33C01 | Active | 53.0 | 05/08/2010 | 04/08/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by hydroelectric facilities | | 2248769 | | | Active | 51.7 | 03/09/2010 | 02/09/2012 | First Gold Exploration inc. (81107) | - \$ | 1,200.00 \$ | | | 2251858 | | 33C01 | Active | 53.0 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 135.00 \$ | Affected by hydroelectric facilities | | 2251859 | | 33C01 | Active | 20.1 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | Affected by energy transport line | | 2251860 | A | 33C01 | Active | 13.3 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | | | 2251861 | | 33C01 | Active | 13.9 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | | | 2251862 | | 33C01 | Active | 14.5 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | | | 2251863 | | 33C01 | Active | 37.6 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 120.00 \$ | | | 2251864 | A | 33C01 | Active | 8.8 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | Affected by energy transport line | | 2251865 | | 33C01 | | 32.9 | 29/09/2010 | | First Gold Exploration inc. (81107) | - \$ | 120.00 \$ | | | 2251866 | | 33C01 | Active | 13.4 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | | | 2251867 | A | 33C01 | Active | 6.0 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | | | 2251868 | A | 33C01 | Active | 5.4 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | | | 2251869 | A | 33C01 | Active | 4.8 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 48.00 \$ | Affected by hydroelectric facilities | | 2251870 | A | 33C01 | Active | 35.9 | 29/09/2010 | 28/09/2012 | First Gold Exploration inc. (81107) | - \$ | 120.00 \$ | Affected by hydroelectric facilities | # 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY (Item 7) #### 5.1 Accessibility The southeast boundary of the Pivert-Rose property is approximately 30 km north of the community of Nemaska in the James Bay area of the province of Québec (Fig. 5.1). The main showings (Pivert and Rose) are easily accessible by driving along *La Route du Nord*—the primary all-season gravel road linking Chibougamau (approximately 300 km to the SSE) and Nemaska—and then by borrowing several gravel roads that are well maintained by Hydro-Québec. Access from Matagami is also possible via provincial road 109 (known as the James Bay Road) and driving north for 275 km until it reaches *La Route du Nord*. After an additional 275 km heading east on *La Route du Nord*, Hydro-Québec roads provide access to the main showings (Fig. 5.1). The Rose deposit can be reached from the main gravel road by walking along a winter road for approximately 1.5 km (Fig. 5.1a). The Hydro showing is reached by following the clearing beneath a power line (Fig. 5.1b) for approximately 200 m; the showing occurs under the power line. The JR showing lies on both sides of the main road (Fig. 5.1c), but the Pivert showing requires walking through the woods for approximately 1 km. Figure 5.1 – Access to the Rose, Hydro and JR showings: A) Winter road providing access to the Rose deposit; B) Power line on the way to the Rose deposit that provides access to the Hydro showing; C) The JR showing by the side of the main road. Photos taken by the author. #### 5.2 Climate The climate of the area is sub-arctic. January has the coldest average daily temperature of -21°C, and July is the warmest month with an average daily temperature of 15°C. Snow falls from October until the end of May, with peaks of up to 39 and 41 cm in December and January respectively. #### 5.3 Local Resources The nearest community is Nemaska, a small Cree community (560 people according to the 2001 Canada census) located on the shores of Lake Champion, approximately 50 km south of the Pivert-Rose property. The nearest infrastructure with general services is the Nemiscau Camp, also approximately 50 km south of the property. The area is serviced by the Nemiscau airport (located halfway between Nemiscau and Nemaska), which provides regular and charter flights. Hydro-Québec owns some infrastructure and several facilities in the area, including nearby hydro-electric power plants and electrical transmission lines that cross the Pivert-Rose property. ## 5.4 Physiography Topographic relief in the Pivert-Rose area ranges from 650 to 1,200 metres above sea level. Most of the area is characterized by low ridges and hills flanked by generally flat areas of glacial outwash, swamps and a few lakes and bogs. Overburden thickness is unknown for most of the property, although the bedrock does crop out at several places in the area of the Pivert showing and the Rose deposit. Figure 5.2 – Topography and accessibility of the Pivert-Rose property # 6.0 HISTORY (Item 8) Most of the historical work prior to 2005 consisted of regional surveys conducted by the Government of Québec or by a few mining companies. Recently, there has been a bit more activity from mining companies in the area. Table 6.1 summarizes historical work conducted in the vicinity of the Pivert-Rose property that was declared as assessment work by mining companies. Only one historical drill hole is known to have been drilled on the current Pivert-Rose property. Hole 555-09 was drilled by Dios Exploration in 2008 to test a magnetic anomaly. The hole intercepted biotite granitic gneiss followed by feldspar-porphyric diorite. No samples were assayed and the core was left at the drill site. Table 6.1 – Historical work on the Pivert-Rose property | Year | Company | Work | Reference | |------|---|--|-------------| | 1936 | Dome Mines Ltd. | Geological survey; Drilling (outside the property) | GM 09863-A | | 1962 | MRN | Geological survey | RP 483(A) | | 1963 | MRN | Geological survey | CARTE 1510 | | 1968 | MRN | Geological survey | RG 136(A) | | | | Geological survey | RG 136 | | 1972 | Caron, Dufour, Séguin & Associated | Technical evaluation; Compilation | GM 34000 | | 1974 | MRN | Geochemistry | DP 419 | | | | Geological survey | DP 278 | | | SDBJ | Geological survey; Geochemistry | GM 30960 | | | | Geological survey, Ground Geophysics | GM 34071 | | | | Geochemistry | GM 34044 | | | | Technical evaluation | GM 34002 | | 1975 | MRN | Geological survey | DP 329 | | | SDBJ | Technical evaluation; Compilation | GM 34001 | | | | Geochemistry | GM 34046 | | | | Airborne geophysics | GM 34073 | | 1976 | MRN | Geological survey | DP 358 | | | SDBJ | Geochemistry | GM 34047 | | 1978 | MRN | Geological survey | DPV 574 | | | | Geological survey | DPV 585 | | 1979 | SDBJ | Technical evaluation | GM 38167 | | 1980 | SDBJ | Geological survey; Geochemistry | GM 37998 | | 1985 | MRN | Geochemistry | MB 85-11 | | 1990 | MSV Resources Inc. | Airborne geophysics | GM 49771 | | 1994 | MRN | Technical evaluation | PRO 94-05 | | 1995 | MRN | Technical evaluation; Geological survey | PRO 95-06 | | 1996 | MRN | Geochemistry | MB 96-22 | | 1998 | MRN | Geochemistry; Geological survey | MB 98-10 | | 1999 | MRN | Compilation; Geological survey | MB 99-35 | | 2000 | MRN | Geological survey | RG 2000-04 | | 2003 | MRN | Geological survey; Compilation | ET 2002-05 | | | | Geological survey; Compilation | ET 2002-06 | | 2005 | De Beers Canada Inc. | Airborne geophysics | GM 63031 | | 2006 | Cambior Inc. | Geochemistry | GM 62452 | | | | Technical evaluation | GM 62451 | | | | Airborne geophysics | GM 62446 | | | | Geochemistry | GM 62356 | | 2007 | Dios Exploration Inc. and Sirios Resources Inc. | Geochemistry | GM 62837 | | | , | Geological survey | GM 63046 | | | | Ground and Airborne geophysics | GM 63034 | | | lamgold Inc. | Geochemistry | GM 63267 | | | MRN | Compilation | PRO 2007-05 | | | | Compilation | PRO 2007-06 | | | UQAC | Geological survey | ET 2007-01 | | 2008 | Dios Exploration Inc. and Sirios Resources Inc. | Geochemistry | GM 63475 | | | , | Technical evaluation; Geological survey | GM 63467 | | | | Drilling (1 DDH on Block C) | GM 63907 | | | lamgold Inc. | Geochemistry; Geological survey | GM 63606 | | | MRN | Compilation | EP 2008-02 | | | | Compilation | PRO 2008-03 | | | | Compilation | PRO 2008-04 | | | Virginia Mines Inc.
and lamgold Inc. | Airborne geophysics | GM 63781 | | 2009 | MRN | Compilation | EP 2009-02 | | | | Geological survey | RP 483 | ## 7.0 GEOLOGICAL SETTING (Item 9) The Pivert-Rose property is located in the northeast part of the Archean Superior Province (Fig. 7.1) of the Canadian Shield craton, and more precisely within the Middle and Lower Eastmain Greenstone Belt (MLEGB; Fig. 7.1). Most of this section was borrowed and modified from Card and Poulsen (1998), which provides a thorough description of the regional geology, and from Moukhsil et al. (2007), which synthesizes the geology and metallogenesis of the Middle and Lower Eastmain Greenstone Belt. Other sources were also used to complete the description of the geological setting, such as assessment reports, the authors' personal knowledge of the region, and information provided by the issuer. Figure 7.1 – Map of the Superior Province showing subdivisions. The study area box indicates the position of the Middle and Lower Eastmain Greenstone Belt (MLEGB). Based on Card and Ciesielski (1986) and Thurston (1991), as modified by Goutier et al. (2002). #### 7.1 The Archean Superior Province The Archean Superior Province forms the core of the North American continent and is surrounded and truncated on all sides by Proterozoic orogens: the collisional zones along which elements of the Precambrian Canadian Shield were amalgamated (Hoffman, 1988, 1989). The Superior Province represents two million square kilometres free of significant post-Archean cover rocks and deformation (Card and Poulsen, 1998). Tectonic stability has prevailed since ca. 2.6 Ga in large parts of the Superior Province (Percival, 2007). The rocks of the Superior Province are mainly Mesoarchean and Neoarchean in age and have been significantly affected by post-Archean deformation only along boundaries with Proterozoic orogens, such as the Trans-Hudson and Grenville orogens, or along major internal fault zones, such as the Kapuskasing Structural Zone. The rest of the Superior Province has remained stable since the end of the Archean (Goodwin et al., 1972). Proterozoic and younger activity is limited to rifting along the margins, emplacement of numerous mafic dyke swarms (Buchan and Ernst, 2004), compressional re-activation, large scale rotation at ca. 1.9 Ga, and failed rifting at ca 1.1 Ga. With the exception of the northwest and northeast Superior margins that were pervasively deformed and metamorphosed at 1.9 to 1.8 Ga, the craton has escaped ductile deformation. A first-order feature of the Superior Province is its linear subprovinces of distinctive lithological and structural character, accentuated by subparallel boundary faults (e.g., Card and Ciesielski, 1986). Trends in the Superior Province are generally easterly in the south, westerly to northwesterly in the northwest, and northwesterly in the northeast (Fig. 7.1). The southern Superior Province (to latitude 52°N) is a major source of mineral wealth. Owing to its potential for base metals, gold and other commodities, the Superior Province continues to attract mineral exploration in both established and frontier regions. #### 7.2 The Middle and Lower Eastmain Greenstone Belt The Middle and Lower Eastmain Greenstone Belt (MLEGB) is located in the middle of the Baie James region about 420 km north of Matagami (Figs. 7.1 and 7.2). This greenstone belt trends approximately E-W and extends over an area 300 km long and 10 to 70 km wide (Moukhsil et al., 2007). The MLEGB consists of volcano-sedimentary rock sequences derived from volcanic eruptions in an oceanic environment (i.e., mid-ocean ridges, oceanic platforms and volcanic arcs) that were subsequently injected by calc-alkaline intrusions of gabbroic to monzogranitic composition. Like the Abitibi Greenstone Belt, the MLEGB has no basement sensu stricto. The La Pêche pluton is the oldest intrusion, dated at 2747 +3/-2 Ma (Moukhsil and Legault, 2002), compared with 2751 +0.6/-0.8 Ma for the Kauputauch Formation (Moukhsil et al., 2001). The volcanism of the Eastmain sector therefore occurred in the absence of an ancient felsic crust (basement sensu stricto), as is evidenced by inherited zircon ages from volcanic rocks that range from 2745 to 2713 Ma and from intrusions that cross-cut the MLEGB (2747 to 2723 Ma) (Moukhsil et al., 2001; Moukhsil, 2000). This contrasts sharply with the eruptive setting of the volcanic rocks of the La Grande belt (2800 to 2738 Ma) (Fig. 7.1), which was emplaced in the presence of an ancient (3520 to 2810 Ma) tonalitic protocraton (Goutier et al., 1999a,b and 1998a,b). Proterozoic activity in the MLEGB was limited to the injection of N-S, NW-SE and NE-SW diabase dykes. Figure 7.2 – Map showing the location of the Pivert-Rose property within the geological setting of the Middle and Lower Eastmain belt according to Moukhsil et al., 2007. The approximate location of the Pivert-Rose property is shown in black. The distortion when compared to other figures in this report is due to the different projection used by Moukhsil et al. (2007). At least three deformation phases can be recognized within the MLEGB (Moukhsil et al., 2007). The first phase (D1), with an estimated age of 2710 to 2697Ma (minimum ages of syntectonic intrusions), is associated with roughly E-W schistosity (S1). The second phase (D2), with an estimated age of 2668 to 2706 Ma (Moukhsil and Legault, 2002), is associated with NE-SW schistosity (S2), which is roughly N-S in several areas. The D2 deformation phase is responsible for the second NNE-SSW shortening in the Baie James area and is probably equivalent to the event that occurred around 2690 Ma in Opatica (Boily, 1999). The third phase (D3), whose age is estimated at <2668 Ma (age of metamorphism), affects the syn- to post-tectonic intrusions, among others. This deformation phase was non-penetrative and less evident on a regional scale. However, it is more pronounced in the metasedimentary rocks where it trends WNW-ESE to NW-SE. The MLEGB was affected by a set of faults or shear zones. Most of these faults are spatially linked to the mineral occurrences found in the MLEGB. There are three possible orientation systems for the distribution of these structures. The first system runs E-W, the second ENE-WSW and the third NW-SE. Since the principal schistosity (S1) is E-W, Moukhsil et al. (2007) postulate that the E-W-trending faults predate the other faults. The relationship between the two other systems is not clear, but it appears that the NE-SW-trending faults predate the NW-SEtrending faults in the Lake Elmer section (Moukhsil et al., 2007). There are several major tight to isoclinal regional-scale folds (Moukhsil and Doucet, 1999). Franconi (1978) prepared a synthesis on this topic, concluding that the MLEGB features a large synclinorium with an E-W axis, whose core is occupied by the rocks of Opinaca. Metamorphism ranges from greenschist facies to amphibolite facies. Gauthier and Laroque (1998) and Moukhsil (2000) identified a metamorphic front characterized by large folds overturned toward the south at the contact between Nemiscau metasediments and the MLEGB volcanics. Contact metamorphism is amphibolite facies especially around synto post-tectonic intrusions. Granulite facies has been identified mainly in the middle of the sedimentary basins of Nemiscau and Opinaca. Locally, a few orthopyroxene grains are observed in the paragneisses of the Auclair Formation (Moukhsil and Legault, 2002). #### 7.3 Geological Setting of the Pivert-Rose Property The Pivert-Rose property is located in the southern portion of the Middle and Lower Eastmain Greenstone Belt (Figs. 7.2 and 7.3). Although the MLEGB shows a wide variety of rock types, most of the claims constituting the Pivert-Rose property are underlain by intrusive lithologies. Based on the regional geology interpretation of Moukhsil et al. (2007), most of the property is covered by syntectonic intrusions (2,710 to 2,697 Ma). Late- to post-tectonic intrusions (<2,697 Ma) are also present to a lesser extent. Very limited portions of the Natal Formation (2,739 to 2,720 Ma) may be found in the southeastern claims of Block B as basalts, amphibolites, komatiites and andesites. The paragneiss cropping out in Block D and Block E belong to the Auclair Formation (2,697 to 2,674 Ma), and small portions of the southwestern extension of the Anatacau-Pivert Formation (2,720 to 2,705 Ma) may also be present, consisting mostly of basalts. Gabbros, pyroxenites and diorites cut across the property geology. The Pivert-Rose property also hosts pegmatites, occurring as irregular but generally continuous lenses within the biotite schists. Historical work in the 1960s, followed by additional work by the *Ministère des* Ressources naturelles et de la Faune du Québec ("MRNFQ"), uncovered four (4) showings on the property, two of which (Rose and Pivert) were recently examined more closely by First Gold. Both are showings of pegmatites bearing lithium and rare-element mineralization. Other rock types, including gneiss, dacite, quartzite and conglomerate, have also been reported. Lithologies are generally well foliated with a SE orientation, except for the more massive and unfoliated granites and pegmatites. Figure 7.3 – Geology of the Pivert-Rose property area # 8.0 DEPOSIT TYPES (Item 10) The Middle and Lower Eastmain Greenstone Belt (MLEGB) contains more than a hundred mineral showings exhibiting a variety of ages, host rocks, styles (disseminated sulphides, massive sulphides, veins and dykes) and metal suites. The mineral occurrences of the MLEGB have been divided into six types according to Moukhsil et al. (2007): - 1) Sulphide facies iron formation - 2) Volcanogenic mineralization - 3) Magma-related mineralization - 4) Orogenic mineralization - 5) Gold-bearing mineralization associated with oxide- or silicate-facies iron formations - 6) Pegmatite-related mineralization Types 1 to 3 are associated with an episode of volcanic
arc construction (volcanic cycles 1 to 4). Types 4 and 5 are contemporaneous with major deformation events (D1 and D2), whereas Type 6 is associated with post-tectonic intrusions. Based solely on its geological environment, the Pivert-Rose property has potential for a number of deposit types. However, based on the known discoveries, only the type recognized in type 6 (Rare-Element LCT-type Pegmatite) will be discussed herein. Pegmatites constitute a category of granite-related ore deposits that are distinct from the magmatic ores disseminated within granites and from hydrothermal assemblages. Granitic pegmatites have been the subject of numerous attempts at classification, but Cerny and Ercit (2005) provided the most recent update. These authors stipulate that, in addition to geochemical composition, the geological location should also be taking into account in the classification of granitic pegmatites, leading to the following division into five classes: - 1) Abyssal - 2) Muscovite - 3) Muscovite rare-element - 4) Rare-element - 5) Miarolitic Most of these classes can be subdivided into subclasses with fundamentally different geochemical (and in part geological) characteristics. Further subdivision of most subclasses into types and subtypes is based on more subtle differences in geochemical signatures or pressure and temperature conditions of solidification, expressed as different accessory mineral assemblages. The second approach proposed by Cerny and Ercit (2005) is petrogenetic and developed for pegmatites derived by igneous differentiation from plutonic parents. Three families are distinguished: - 1) An NYF family with progressive accumulation of Nb, Y and F (besides Be, REE, Sc, Ti, Zr, Th and U), fractionated from subaluminous to metaluminous A- and I-type granites that can be generated by a variety of processes involving depleted crust or mantle contributions; - A peraluminous LCT family marked by prominent accumulation of Li, Cs and Ta (besides Rb, Be, Sn, B, P and F), derived mainly from S-type granites, less commonly from I-type granites; 3) A mixed NYF + LCT family of diverse origins, such as contamination of NYF plutons by digestion of undepleted supracrustal rocks. # 8.1 General model for rare-element LCT-type pegmatites Based on the pegmatite classification in Cerny and Ercit (2005) and the assay results from the Pivert-Rose property, the pegmatites recognized to date on the Pivert-Rose property are clearly of the rare-element LCT-type. Thus, only this sub-type will be discussed further. #### 8.1.1 General characteristics According to Cerny et al. (2005), rare-element pegmatite deposits of the LCT family are encountered in orogens from the early Archean to very recent; i.e., from ~3 Ga (Trumbull, 1995) to 6.8 Ma (Pezzotta, 2000). The granite-pegmatite suites are syn- to late orogenic and related to fold structures, shears and fault systems. The pegmatites vary greatly in form, controlled mainly by the competency of the enclosing rocks, the depth of emplacement, and the tectonic regime during and after emplacement. The pegmatites rarely occur within their parent granites, but in such cases they form swarms or networks of fracture-filling dykes hosted by contraction fractures or structures generated by post-consolidation stresses (e.g., Ginsburg et al., 1979). Most of the deposits are hosted by schists and gneisses, and their shapes vary from lenticular, ellipsoidal, turnip- or mushroom-like forms in plastic environments, to fracture-filling dykes and stocks in brittle host rocks (e.g., Cameron et al., 1949). The length of a mineralized pegmatite intrusion is typically tens to hundreds of metres, but they may attain several kilometres (Greenbushes, Australia: Partington et al., 1995), and interconnected dyke systems are known to be up to 12 km long (Manono, Zaire; Thoreau, 1950). An important pattern emerges in the generalized scenario and especially in the zoning sequences for individual pegmatite districts (Cameron et al., 1949; Norton, 1983; Cerny et al., 2005). The minerals present in each zonal assemblage decrease in number from the margins (border and wall zones) to the central or latest primary unit, termed the core. Assemblages of the border and wall zones typically consist of quartz-plagioclase-microcline-muscovite-biotite-garnet-tourmaline-(beryl-apatite), and the internal zoning sequence usually ends with nearly monomineralic masses of microcline followed by a monomineralic quartz core. Crystallization along a liquidus surface, wherein the number of coexisting phases increases with decreasing temperature, produces the opposite trend in the sequence of mineral assemblages (e.g., Burnham and Nekvasil, 1986). The shape and attitude of pegmatite intrusions have considerable control over the internal structure of the deposits (Cerny et al., 2005). Homogeneous bodies are exceptional, and a primary oriented fabric is generally restricted to the albite-spodumene type (e.g., Oyarzábal and Galliski, 1993). The pegmatites are largely concentrically zoned or layered, or they display a combination of both features (Cameron et al., 1949; Beus, 1966; Cerny, 1991b). Concentric patterns typical of substantially three-dimensional bodies can be extensively disturbed in flat pegmatites. Subvertical dykes commonly exhibit telescoping of strongly asymmetric zoning patterns, with the inner zones prominently shifted upward. The zoning progresses from finer grained zones of more or less granitic composition on the outside to inner zones that exhibit enrichment in rare-element mineralogy and textural diversity, but some are also near-monomineralic. In conjunction with the accumulation of rare-element mineralization in the inner zones, complex pegmatites also show inwardly increasing geochemical fractionation in rockforming minerals (e.g., Cerny et al. 1985; Cerny, 2005; London, 2005b), which serves as an important exploration guide (e.g., Cerny, 1992a). More detailed descriptive information on general features of granitic pegmatite deposits, including mineralogy, geochemistry, REE abundances, and fluid inclusion studies can be found in Cameron et al. (1949), Beus (1966), Solodov (1962), Cerny (1989a, 1991b), and Cerny et al. (1998). ### 8.1.2 Emplacement of pegmatite melts Passive emplacement of pegmatite magma was historically advocated by many authors, but structural-geological analysis contradicts this interpretation (Cerny et al., 2005). Forcible intrusion is indicated in all closely examined cases (Brisbin, 1986) and relevant theoretical considerations and experiments (e.g., Rubin, 1995a, b). Beus (1966) arrived empirically at 2 km for the maximum distance of a pegmatite from its parent granite. In contrast, Baker (1998) considers the magma pressure in the parental chamber sufficient to propel low-viscosity pegmatite melts up to 10 km from the source. Increasing contents of Li, B, P, F and H_2O reduce polymerization, increase fluidity and mobility, and enhance thermal stability of pegmatite melts to lower temperatures (Cerny et al., 2005). Thus, the pegmatite melts that are most enriched in volatiles and rare-elements can travel the farthest from their source (Fig. 8.1). This explains the regional zoning of rare-element pegmatites around parental granites (Cerny, 1992b). The Li-rich complex pegmatites in general and the lepidolite-subtype dykes in particular, are invariably the most distal ones relative to the parent plutons (Cerny et al., 2005). These categories of LCT rare-element pegmatites locally appear to be divorced from granites by interplay of host structures and erosional exposure. In individual pegmatite dykes, internal diversity in fluidity promotes geochemical and paragenetic telescoping (e.g., Beus, 1948; Cerny and Lenton, 1995). Figure 8.1 – Regional zoning in fertile granites and pegmatites (modified from Cerny, 1991b and Selway et al., 2005): A) Regional zoning of a fertile granite (outwardly fractionated) with an aureole of exterior lithium pegmatites; B) Schematic representation of regional zoning in a cogenetic parent granite and pegmatite group. Pegmatites increase in degree of evolution with increasing distance from the parent granite. Pegmatite dykes commonly occur as groups of similar pegmatite-types that originated from the same parent granite intrusion. A pegmatite field can occur over territories of hundreds to thousands of square kilometres when favourable conditions are met. Finally, pegmatite provinces are described as huge terranes characterized by commonality of geologic history that tend to generate arrays of pegmatite fields that are at least loosely related in time, structural style, and mode of origin. A more detailed definition of these terms is given by Cerny et al. (2005): - 1) A pegmatite group is a spatially and genetically coherent pegmatite population, generated by differentiation of a single granitic pluton. Pegmatite dykes interior, marginal, and exterior to a particular fertile granite intrusion may be neatly distributed around the plutonic parent, although asymmetric arrays are much more common (Fig. 8.1; Beus, 1966; Kuzmenko, 1976; Cerny, 1989b, 1990, 1991c; Cerny et al. 2005). Radiometric dating confirms in many cases the link between fertile granites and surrounding pegmatite dykes (e.g., Baadsgaard and Cerny, 1993; Trumbull, 1995; Breaks et al., 2005). The pegmatites tend to show different kinds and degrees of mineralization in a regional zonal pattern, concentric to unidirectional. The common progression from proximal to distal pegmatites is from barren to Be, Be-Nb-Ta, Li-Be-Ta-Nb, and Li-Cs-Be-Ta-(F) assemblages, with B, P, and Sn appearing at (and generally also increasing from) locally different stages. The zoning tends to be particularly strongly developed vertically, with the most evolved pegmatites at the top of the three-dimensional array. Locally, the more evolved pegmatites are relatively late, as they crosscut the primitive dykes (e.g.,
Cerny, 1991c, 1992b). - 2) Pegmatite fields are the results of favourable conditions for partial melting that generate fertile granites and are regional in scale, and they commonly lead to intrusion and differentiation of multiple fertile plutons over territories of hundreds to thousands of square kilometres (Cerny et al., 2005). The ensuing pegmatite fields contain granite-pegmatite suites that are more or less closely related, having been mobilized and differentiated from related or identical metamorphic protoliths during a single anatectic event. This results in similarities in mineral assemblages and geochemical signatures of the granite-pegmatite groups. - 3) Pegmatite provinces are huge terranes characterized by commonality of geologic history that tend to generate arrays of pegmatite fields that are at least loosely related in time, structural style, and mode of origin; geologic provinces locally represent rare-element pegmatite provinces of enormous dimensions (Landes, 1935; Gordiyenko, 1974; Ginsburg et al., 1979; Cerny, 1991a, c). ### 8.1.3 Well-studied pegmatite ore deposits Two examples of well-studied pegmatite deposits showing similarities with the known Pivert-Rose pegmatites are presented here as a reference. At the current exploration stage of the Pivert-Rose property, the extent of the mineralized pegmatites has not yet been fully investigated. Therefore the authors do not make any assumption that the Pivert-Rose pegmatites are comparable in terms of tonnage and/or grade to the deposits presented in this section. These deposits should be considered in light of their general characteristics and not in terms of their established economic characteristics. The first example is the extensively studied Tanco deposit (Fig. 8.2) in the Archean Superior Province of the Canadian Shield in southeast Manitoba. It is described in Cerny et al. (1998), Cerny (2005), Stilling et al. (2005) and Cerny et al. (2005). This 2640 Ma pegmatite is completely hidden and forms a subhorizontal lenticular body consisting of four concentric and five layered zones about 1.3 km long (Fig. 8.2; Cerny et al., 2005). It belongs to an extensive series of cogenetic, closely associated pegmatites, but the parent granite is not exposed. However, nearby pegmatite groups of similar character show a clear connection to pegmatitic leucogranites. Near-extreme igneous fractionation of Rb, Cs, Ga, and Ta characterizes Tanco, which is enriched in these metals as well as Li, Be, B, and P, and a variety of industrial minerals. Nevertheless, the overall composition of the pegmatite is close to granitic, despite the assemblage of approximately 100 minerals (Stilling et al., 2005). Petalite, largely decomposed into secondary spodumene + quartz, dominates over minor late primary spodumene and over subordinate amblygonite-montebrasite and lepidolite. Figure 8.2 – Longitudinal fence diagram of the west to east section through the Tanco pegmatite (western half above, eastern half below; modified from Stilling et al., 2005; Cerny et al., 2005). The border zone (Zone 10) is too thin to be shown at this scale. The second example is the Mongolian Altai 3 deposit (Fig. 8.3), which shows extensive reserves of spodumene (Cerny et al., 2005). Mongolian Altai 3 (also known as Keketuhai, Keketuohai or Koktogai), dated at 330 Ma, is located in the central part of an Altai Caledonian-Hercynian fold belt in northwest China. It belongs to an extensive suite of cogenetic leucogranites and pegmatites. The pegmatite forms a vertical plug with farreaching subhorizontal sheets branching from its base (Fig. 8.3). Ten concentric zones show a classic progression from mineralogically simple outer assemblages to complex and then near-monomineralic associations in the interior. Multi-generational minerals show the same progressive fractionation pattern as in the Tanco pegmatite above. Figure 8.3 – Horizontal and vertical sections through the Mongolian Altai pegmatite No. 3 (modified from Lu et al., 1997; Cerny et al., 2005). In the horizontal section at left, the pegmatite is approximately 150 X 250 m in size; the scale of the vertical section at right is slightly reduced. ### 8.2 Rare-element pegmatites from the Superior geological province Although Selwey et al. (2005) only reviewed the rare-elements pegmatites from the geological Superior Province covering Ontario and Manitoba, and excluded the large portion of the Superior Province covering Québec, the author of this report considers that the study nonetheless applies to the Québec portion of the Superior Province in which the Pivert-Rose property occurs. Therefore, a large portion of the following text has been adapted from Selwey et al. (2005). According to the review of rare-element pegmatites in the Superior Province by Selwey et al. (2005), rare-element pegmatite dykes within the Superior Province (in Ontario and Manitoba) usually cluster to form pegmatite fields that contain one or two large and highly fractionated pegmatites and numerous small pegmatite dykes. For example, the Bernic Lake pegmatite group, part of the Cat Lake-Winnipeg River pegmatite field in southeastern Manitoba, contains the Tanco pegmatite (1.99 km long x 1.06 km wide x 100 m thick; Stilling, 1998) and eight other smaller, less-fractionated pegmatite dykes (Cerny et al., 1981). The Separation Rapids pegmatite group lies to the east of the Cat Lake–Winnipeg River pegmatite within the same Bird River–Separation Lake metavolcanic belt (Breaks et al., 1975). The Separation Rapids pegmatite group contains two large highly fractionated pegmatites: Big Whopper (350 m in strike length x 60 m thick) and Big Mack (30 x 100 m; Breaks and Tindle, 1997b; Breaks et al., 1999). The Big Whopper and Big Mack pegmatites are members of the Southwestern pegmatite subgroup, which contains at least 23 additional smaller pegmatite dykes. Additional large pegmatite fields in the Superior Province of Ontario with economic potential include: the Dryden pegmatite field, which includes the highly fractionated Fairservice pegmatite dykes and Tot Lake pegmatite, and the Seymour Lake pegmatite group, which includes the highly fractionated North Aubry and South Aubry pegmatites (Breaks et al., 2003). These pegmatites contain elevated Rb, Cs, Be and Ta contents. The Case pegmatite in northeastern Ontario is unique in that it is a large fractionated pegmatite with no identified associated smaller pegmatite dykes, likely due to thick overburden (Breaks et al., 2003). Selwey et al. (2005) also report on several geological features that are common among pegmatites of the Superior Province of Ontario (Breaks and Tindle, 2001; Breaks et al., 2003) and Manitoba (Cerny et al., 1981; Cerny et al., 1998): - 1) The pegmatites tend to occur along subprovincial boundaries. For example, Tanco (Manitoba) and Separation Rapids (Ontario) pegmatites within the Bird Lake-Separation Lake metavolcanic belt occur along the boundary between the English River and Winnipeg River subprovinces; the beryl-phosphate Sandy Creek and McCombe pegmatites and the Lilypad Lake pegmatite field occur along the Uchi–English River subprovincial boundary; the Dryden pegmatite field occurs within the Sioux Lookout Domain along the Winnipeg River–Wabigoon subprovincial boundary; and the North Aubry, South Aubry, and Tebishogeshik pegmatites occur along the English River–Wabigoon subprovincial boundary north of Armstrong. - 2) Most pegmatites in the Superior Province (in Ontario and Manitoba) occur along subprovince boundaries, except for those that occur within the metasedimentary Quetico Subprovince. Examples of pegmatites occurring in this area from west to east are: Wisa Lake (south of Atikokan), the Georgia Lake pegmatite field (north of Nipigon), and the Lowther Township (south of Hearst) pegmatites. - 3) Pegmatites are present at greenschist to amphibolite metamorphic grade. In Ontario and Manitoba, pegmatites are absent in the granulite terranes of the Quetico and English River subprovinces. - 4) Most pegmatites in the Superior Province (Ontario and Manitoba) are genetically derived from a fertile parent granite. The Cat Lake–Winnipeg River pegmatite field (Manitoba) contains six leucogranite intrusions (Greer Lake, Eaglenest Lake, Axial, Rush Lake, Tin Lake and Osis Lake) emplaced along east-trending faults, which are parents to numerous pegmatites (Cerny et al., 1981; Cerny et al., 1998). In contrast, the Tanco pegmatite has no fertile granite outcropping in reasonably close vicinity that could be its potential parent (Cerny et al., 1998). The peraluminous Separation Rapids pluton (4 km wide) is the parent to the Separation Rapids pegmatite field, including Big Whopper and Big Mack pegmatites, north of Kenora, Ontario. The peraluminous Ghost Lake batholiths (80 km wide) is the parent to the Mavis Lake pegmatite group, including the Fairservice pegmatite dykes, north of Dryden, Ontario. - 5) Highly fractionated spodumene- and petalite- subtype pegmatites are commonly hosted by mafic metavolcanic rocks (amphibolite) in contact with a fertile granite intrusion along subprovincial boundaries, whereas numerous beryl-type pegmatites are hosted by metasedimentary rocks (metawacke or metapelite) of the Sioux Lookout Domain. Pegmatites within the Quetico Subprovince are hosted by metasedimentary rocks or their fertile granitic parents. For example, the spodumene-subtype Wisa Lake pegmatite is hosted by metasedimentary rocks south of Atikokan, Ontario. The MNW petalite-subtype pegmatite, north of Nipigon, Ontario, is enclosed within a medium-grained biotite-muscovite granite of the MNW stock, which is presumed to be its parent (Pye, 1965). The lepidolite-subtype Lowther Township pegmatite, south of Hearst, Ontario is enclosed within its parent garnet-biotite pegmatitic granite (Breaks et al., 2002). The spodumene-subtype Case pegmatite system is hosted by orbicular biotite tonalite in the southeastern part of
the Case batholith north of Cochrane, Ontario, within the Opatica Subprovince. - 6) Biotite and tourmaline are common minerals within metasomatic aureoles in mafic metavolcanic host rocks to pegmatites. Tourmaline, muscovite, and biotite are common within metasomatic aureoles in metasedimentary host rocks. - 7) Most of the pegmatites of the Superior Province contain spodumene and/or petalite as the dominant Li mineral, except for the Lilypad Lake, Swole Lake, and Lowther Township pegmatite (all in Ontario), and the Red Cross Lake lithium pegmatite (Manitoba), which have lepidolite as the dominant Li mineral. Amblygonite- and elbaite-dominant pegmatites have not yet been found in the Superior Province, although amblygonite and elbaite occur in the Tanco pegmatite. - 8) Cesium-rich minerals only occur in the most extremely fractionated pegmatites. Pollucite occurs in the Tanco, Marko's, and Pakeagama petalite-subtype pegmatites, the Tot Lake spodumene-subtype pegmatites, and the Lilypad Lake lepidolite-subtype pegmatites (Teertstra and Cerny, 1995). The Pakeagama pegmatite is located in northwestern Ontario along the Sachigo-Berens River subprovincial boundary. Cesium-rich beryl occurs in the spodumene-subtype North Aubry, South Aubry, Case, Tot Lake, and McCombe pegmatites and the lepidolite-subtype Lowther pegmatite, all in Ontario, and in the Tanco pegmatite, Manitoba. - 9) Most pegmatites in the Superior Province contain ferro-columbite and mangano-columbite as the dominant Nb-Ta-bearing minerals. Some pegmatites contain mangano-tantalite as the dominant Ta-oxide mineral, for example the North Aubry, South Aubry, Fairservice, Tot Lake, and Tebishogeshik pegmatites. The Tanco pegmatite contains wodginite as the dominant Ta-oxide mineral. Tantalum-bearing cassiterite is relatively rare in pegmatites of the Superior Province, except for the Separation Rapids and Tanco pegmatites. - 10) Fine-grained Ta-oxides (e.g., manganotantalite, wodginite, and microlite) commonly occur in the aplite, albitized K-feldspar, mica-rich, and spodumene core zones in pegmatites in the Superior province. At Tanco, Ta mineralization occurs in the albitic aplite zone (30), central intermediate muscovite-quartz after microcline zone (60), and lepidolite zone (90). ## 9.0 MINERALIZATION (Item 11) Mineralization recognized to date on the Pivert-Rose property includes rare-element LCT-type pegmatites (Block A) and molybdenum occurrences (Block A). An iron occurrence (Block B) is also mentioned in the government database. ### 9.1 Pivert showing First discovered by the MRNQ in 1961, the Pivert showing was later revisited during the MRNQ's regional mapping program in 2001. The showing is approximately 4.6 km south of Pivert Lake on Block A. The MRNQ recognized mineralization consisting of lithium and beryllium in a pegmatite dyke hosted by paragneiss units. The pegmatite dyke was described as being approximately 10 metres wide with an unknown length because it only crops out for a few metres. It contains approximately 20% spodumene (lithium aluminum silicate), with crystals up to 20 cm long. Beryl (beryllium aluminum silicate) and molybdenite (molybdenum sulphide) were also noted. A grab sample taken from the MRNQ yielded 1.16% Li and 74 ppm Be. First Gold collected four grab samples from the Pivert showing as discussed in Section 10 (*Exploration – Item 12*) and drilled three holes as discussed in Section 11 (*Drilling – Item 13*). First Gold's work added rare elements (Rb, Cs, Ta, Ga) to the original Li-Be mineralization described by the MRNQ. The author, Pierre-Luc Richard, visited the Pivert showing and visually confirmed the presence of mineralization. He determined that the pegmatite dyke was oriented N280/30. One grab sample was collected, which confirmed the type of mineralization as discussed in Section 14 (*Data validation – Item 16*). Figure 9.1 – The Pivert showing. A) General view of the pegmatite outcrop; B) Closer view of the pegmatite. Photos taken by the author during the field visit. ### 9.2 Rose deposit Also discovered by the MRNQ in 1961 and revisited during a regional MRNQ mapping program in 2001, the Rose deposit is approximately 2.3 km southwest of the Pivert showing on Block A. The mineralization recognized by the MRNQ was similar to the Pivert showing and consisted of lithium and beryllium in pegmatite dykes hosted by melanocratic gabbro. In contrast to Pivert, where only one pegmatite dyke was recognized at surface, the Rose deposit was described as consisting of several pegmatite dykes with one measuring up to 20 metres wide. The MRNQ reported mineralization consisting of spodumene and lepidolite (potassium lithium aluminum silicate) constituting up to 40% of the pegmatites. A grab sample taken by the MRNQ yielded 0.21% Li and 129 ppm Be. First Gold collected 25 grab samples on the Rose deposit as discussed in Section 10 (*Exploration – Item 12*) and drilled 143 holes as discussed in Section 11 (*Drilling – Item 13*). Similar to Pivert, First Gold's work at the Rose deposit added rare elements (Rb, Cs, Ta, Ga) to the original Li-Be mineralization, just as it did at Pivert. The author Pierre-Luc Richard visited the Rose deposit and visually confirmed the presence of the mineralization. The author collected five grab samples, which confirmed the type of mineralization as discussed in Section 14 (*Data validation – Item 16*). The lengths of the pegmatite dykes could not be determined by surface observations, but recent modelling as part of this resource estimate shows that the mineralized pegmatitic dykes are oriented N296 and show a shallow dip to the northwest averaging 15 degrees (locally from 5 to 20 degrees). The main zone (Peg-1) was identified by drilling over a strike of 1,100 metres and remains open along strike at depth. Figure 9.2 – The Rose deposit: A) General view of the Rose pegmatite outcrop; B) Closer view of the Rose pegmatite; C) General view of the Rose South pegmatite outcrop; D) Closer view of the Rose South pegmatite. Photos taken by the author during the field visit. ## 9.3 JR showing Discovered by First Gold while prospecting in the vicinity of the Rose and Pivert showing, the JR showing is approximately midway between Rose (2.4km SW) and Pivert (2.4km NNE). It is easily accessible because it crops out on both sides of the main gravel road. First Gold collected three (3) grab samples from the JR showing as discussed in Section 10 (*Exploration – Item 12*). The JR showing is very similar to the Rose and Pivert showings in terms of geological context and mineralization. It consists of Li, Be, Rb, Ta, Cs and Ga enrichment (although with lower rare-element grades thus far) within a pegmatite dyke with an estimated width of approximately 10 metres. Surface observations were insufficient to determine the length of the dyke because it crops out for only 30 metres. The author Pierre-Luc Richard visited the JR showing and visually confirmed the presence of mineralization. He determined that the orientation of the pegmatite dyke was similar to that of the Pivert and Rose pegmatites (N280/30). Two grab samples were collected and confirmed the type of mineralization, as discussed in Section 14 (*Data validation – Item 16*). Figure 9.3 – The JR showing: A) General view of the pegmatite outcrop on both sides of the main road; B, C) Closer views of the pegmatite on both sides of the main road. Photos taken by the author during the field visit. ### 9.4 Hydro showing Discovered by First Gold while prospecting in the vicinity of the Rose and Pivert showings, the Hydro showing is approximately 1 km NE of the Rose deposit. Its name comes from the fact that it is located directly under a Hydro-Québec electric line. First Gold collected two grab samples from the Hydro showing as discussed in Section 10 (*Exploration – Item 12*). Hydro is very similar to the Rose, Pivert and JR showings in terms of geological context and mineralization. It consists of Li, Be, Rb, Ta, Cs and Ga (although with lower rare-element grades thus far) in a pegmatite dyke with an estimated width of approximately 6 metres. Surface observations were insufficient to determine the length of the dyke, but it can be traced for at least 160 metres. The author, Pierre-Luc Richard, visited the Hydro showing and visually confirmed the presence of the pegmatite. Based on the observations, the orientation of the pegmatite dyke was determined to be similar to those of the Pivert, Rose and JR pegmatites (N280/30). Two grab samples collected by the author confirmed the Ta and Be mineralization, but failed to confirm any Li or other rare-element mineralization as discussed in Section 14 (*Data validation – Item 16*). Figure 9.4 – The Hydro showing: A) General view of the pegmatite outcrop; B) Closer view of the pegmatite. Photos taken by the author during the field visit. ### 9.5 West-Ell showing The West-Ell showing was discovered in 1961 by the MRNQ and later revisited during a MRNQ regional mapping program in 2001. It is approximately 300 m NNE of the Hydro showing on Block A and was described as a large outcropping area of several hundred square metres. The mineralization recognized by the MRNQ consisted of approximately 2% molybdenite in quartz veinlets. The veinlets were described as crosscutting a pegmatite dyke and recurrent with a 30-cm spacing and subparallel orientation with respect to the pegmatite dyke. A grab sample taken by the MRNQ yielded 4.08% Mo. The host pegmatite was described as 10 metres wide, but no mention was made about any possible lithium mineralization. First Gold has not yet conducted any work on the West-Ell showing, and the author did not visit this showing. #### 9.6 Other occurrences The MRNQ database indicates another occurrence on the property: the Tesicau iron showing on Block B. The author also examined an additional occurrence during his site visit that is not mentioned in the government database: a molybdenite- and
spodumene-bearing pegmatite dyke on the side of the main gravel road (UTM83, Zone18: 422188E, 5765993N) midway between the Pivert (900 m NE) and JR showings (1.5 km SSW). No samples were analyzed, but it suggests that other occurrences likely exist in the area. Figure 9.5 – Example of another pegmatite occurrence in the vicinity of the Rose and Pivert showings (in this case, a road cut). The photo shows a pegmatite in which molybdenite and spodumene were noted. Note that the pegmatite cuts through a deformation zone without showing any signs of being affected by it. Photos taken by the author during the field visit. # 10.0 EXPLORATION (Item 12) First Gold has performed very little prospecting work on the Pivert-Rose property thus far. Prospecting was strictly limited to the vicinity of the known Pivert showing and the Rose deposit. It consisted of the visual reconnaissance of pegmatites and sampling, in addition to outcrop mapping at the Rose deposit only. A total of 34 grab samples were collected and sent for analysis (Table 10.1). The grades for Li, Ta, Rb, Cs and Be are reported in this section as parts per million (ppm) for each element. Table 2.1 provides factors for converting these grades into Li_2O , Ta_2O_5 , Rb_2O , Cs_2O and BeO (as these elements may also be reported). Note that 10,000 ppm equals 1%. Table 10.1 – Grab samples collected on the Pivert-Rose property by First Gold | Sample | Area | UTM83 2 | | Li | Rb | Ta | Cs | Be | Ga | |--------|--------|---------|----------|--------|-------|-----|-----|-----|-----| | | | Easting | Northing | ppm | ppm | ppm | ppm | ppm | ppm | | 26221 | Hydro | 420509 | 5763942 | 7,270 | 900 | 110 | 70 | 67 | 92 | | 26222 | Hydro | 420609 | 5763891 | 4,440 | 580 | 290 | 50 | 227 | 70 | | 26223 | JR | 421723 | 5764524 | 12,900 | 490 | 120 | 20 | 57 | 114 | | 430917 | JR | 421761 | 5764522 | 21,200 | 390 | 51 | 22 | 90 | 107 | | 430918 | JR | 421779 | 5764508 | 14,700 | 1,290 | 44 | 50 | 65 | 93 | | 430906 | Pivert | 422655 | 5766797 | 9,660 | n/a | n/a | n/a | n/a | 70 | | 430907 | Pivert | 422660 | 5766796 | 8,020 | n/a | n/a | n/a | n/a | 60 | | 430908 | Pivert | 422667 | 5766794 | 8,870 | n/a | n/a | n/a | n/a | 70 | | 430909 | Pivert | 422672 | 5766790 | 454 | n/a | n/a | n/a | n/a | 50 | | 26201 | Rose | 420321 | 5763147 | 5,700 | 2,520 | 79 | 67 | 38 | 75 | | 26202 | Rose | 420304 | 5763132 | 11,500 | 680 | 31 | 45 | 270 | 75 | | 26203 | Rose | 420285 | 5763124 | 4,990 | 4,740 | 210 | 150 | 176 | 69 | | 26204 | Rose | 420243 | 5763110 | 7,330 | 1,520 | 99 | 67 | 206 | 61 | | 26205 | Rose | 420227 | 5763098 | 2,760 | 1,320 | 89 | 45 | 150 | 60 | | 26206 | Rose | 420216 | 5763105 | 6,980 | 1,390 | 91 | 64 | 191 | 86 | | 26207 | Rose | 420214 | 5763099 | 1,580 | 2,720 | 140 | 110 | 224 | 80 | | 26208 | Rose | 420152 | 5763095 | 12,400 | 660 | 85 | 51 | 117 | 98 | | 26209 | Rose | 420144 | 5763100 | 10,300 | 620 | 80 | 38 | 107 | 107 | | 26210 | Rose | 420134 | 5763110 | 9,810 | 1,340 | 74 | 49 | 115 | 81 | | 26211 | Rose | 420110 | 5763121 | 9,490 | 1,350 | 80 | 70 | 202 | 82 | | 26212 | Rose | 420110 | 5763121 | 9,320 | 2,200 | 170 | 210 | 842 | 74 | | 26213 | Rose | 420058 | 5763152 | 7,080 | 2,050 | 140 | 90 | 289 | 81 | | 26214 | Rose | 420046 | 5763171 | 7,210 | 1,150 | 190 | 60 | 280 | 65 | | 26215 | Rose | 420057 | 5763177 | 13,300 | 1,760 | 220 | 60 | 56 | 110 | | 26216 | Rose | 420045 | 5763198 | 8,160 | 1,580 | 88 | 46 | 102 | 88 | | 26217 | Rose | 420042 | 5763219 | 8,800 | 3,280 | 61 | 91 | 119 | 72 | | 26218 | Rose | 420042 | 5763225 | 9,510 | 1,500 | 60 | 50 | 147 | 79 | | 26219 | Rose | 419982 | 5763251 | 8,580 | 3,290 | 490 | 130 | 134 | 92 | | 26220 | Rose | 419844 | 5763269 | 3,870 | 1,060 | 220 | 80 | 147 | 68 | | 430901 | Rose | 419635 | 5763393 | 10,200 | n/a | n/a | n/a | n/a | 70 | | 430902 | Rose | 419637 | 5763400 | 6,220 | n/a | n/a | n/a | n/a | 70 | | 430903 | Rose | 419647 | 5763397 | 2,840 | n/a | n/a | n/a | n/a | 90 | | 430904 | Rose | 419655 | 5763398 | 7,140 | n/a | n/a | n/a | n/a | 80 | | 430905 | Rose | 419660 | 5763398 | 11,500 | n/a | n/a | n/a | n/a | 80 | # 11.0 DRILLING (Item 13) First Gold started drilling the Pivert-Rose property in late 2009. The cut-off for this report (in terms of drill holes) was established at hole LR-10-139. This report thus considers a total of 142 holes (including LP-09-01 to LP-09-03) drilled by First Gold totalling 16,673.45 m. The authors obtained assay certificates from ALS Chemex Laboratory to create an independent database. The authors recalculated the results using his independently compiled database according to the following rules: - For Li, two methods were found in the database (ME-MS61 and ME-OG63). ME-OG63 is only available when ME-MS61 shows >10,000 ppm and is a method capable of returning results for higher grades. Therefore, values from ME-OG63 were used when available. - For Be, two methods were found in the database (ME-MS61 and ME-ICP61a). ME-ICP61a is only available when ME-MS61 shows >500 ppm and is a method capable of returning results for higher grades. Therefore, values from ME-ICP61a were used when available. - For Rb, two methods were found in the database (ME-MS61 and ME-MS81). When both methods were available, an average of the two methods was applied. In the case where a sample showed a result of >10,000 ppm Rb, the value of 10,000 was applied prior to proceeding with the average. - For Ta, three methods were found in the database (ME-MS61, ME-MS81 and ME-XRF05). When more than one method was available, an average was applied. In the case where Ta values were >100 ppm using method ME-MS61, the average of ME-MS81 and ME-XRF05 was used. In each instance where this occurred, the results from either ME-MS81 or ME-XRF05 (or both) were available. In the case where the Ta value using method ME-XRF05 was >10,000 ppm, the value of 10,000 was used. - For Cs, three methods were found in the database (ME-MS61, ME-MS81 and ME-XRF05). When more than one method was available, an average was applied. In the case where Cs values were >500 ppm using method ME-MS61, the average of ME-MS81 and ME-XRF05 was used. In each instance where this occurred, results from either ME-MS81 or ME-XRF05 (or both) were available. - For Ga, two methods were found in the database (ME-MS61 and ME-MS81). When both methods were available, an average of the two methods was applied. The grades for Li, Ta, Rb, Cs, and Be are reported in this section as parts per million (ppm) for each element. Table 2.1 provides conversion factors for obtaining Li₂O, Ta₂O₅, Rb₂O, Cs₂O and BeO (as these elements are sometimes reported). Note that 10,000 ppm equals 1%. ### 11.1 Drilling on the Pivert showing Drilling on the Pivert showing is limited to three short holes (NQ core size, total of 351.6 m) completed by First Gold in 2009 (Table 11.1). The objective of the program was to confirm the continuity of the mineralized pegmatite observed on surface. The orientations of the three holes varied from N335 to N010. Hole LP-09-01 is subvertical (-80) while holes LP-09-02 and LP-09-03 where inclined at -45. The three holes were supervised, logged and sampled by Consul-Teck. The program included 46 samples. Hole LP-09-01 returned anomalous values in Li, Cs and Rb and hole LP-09-02 returned anomalous values in rare-elements such as Rb and Cs. Hole LP-09-03 did not intersect any significant values. | T_i | <u>able 11.1 -</u> | <u>- First Gold's diamo</u> | <u>nd drill h</u> | <u>oles on tl</u> | <u>ne Pive</u> | rt showing | g | |-------|--------------------|-----------------------------|-------------------|-------------------|----------------|------------|---| | | Hala | LITA402 7 40 | Flancation | A! | | I amanda | | | Hole | UTM83 Zone 18 | | Elevation | Azimuth | Dip | Length | |----------|------------------|-----------|-----------|---------|-------|--------| | | Easting Northing | | (m) | | | (m) | | LP-09-01 | 422652 | 5766761 | 300 | 335 | -80.0 | 126.00 | | LP-09-02 | 422681 | 5766754 | 300 | 10 | -45.0 | 123.00 | | LP-09-03 | 422623 | 5766768 | 300 | 10 | -45.0 | 102.60 | | | | Total 3 h | oles: | | | 351.60 | ### 11.2 Drilling on the Rose deposit Drilling started in 2009 and has continued since then. For the purposes of this report, a total of 139 drill holes (NQ core size, total of 16,321.85 m) were considered for the Rose deposit (Table 11.2). The original objective of the program was to confirm the continuity of the mineralized pegmatite observed on surface. This objective was quickly upgraded to systematic drilling of the mineralized pegmatite. While most of the holes are oriented N335 (57 holes) at N155 (74), two (2) were drilled at N152, five (5) at N136-N140 and one (1) at N167. Before hole LR-09-11, the dip was mostly -45 or -50. From hole LR-10-11 onward, the dip has been systematically -78 or -80 (subvertical). Drill holes were supervised, logged and sampled by Consul-Teck. The program included 3,083 samples. Hole LR-09-01 did not return significant results with the exception of an anomalous Ta value (380 ppm Ta over 0.20 m). Starting with Hole LR-09-02 and up to and including LR-10-65, every hole (with the exception of LR-10-17 and LR-10-32) returned significant values for Li, Ta, Rb, Cs, Ga or Be, and in most cases, for more than one of these elements. Table 11.2 – First Gold's diamond drill holes on the Rose deposit | | | ible II. | | St GOIL | 3 0 1 | Jiaiii | |----------|--------------------|---------------------|---------------|---------|-------|---------------| | Hole | UTM83 2
Easting | Zone 18
Northing | Elevation (m) | Azimuth | Dip | Length
(m) | | LR-09-01 | 5763337 | 419674 | 294 | 335.0 | -50.0 | 126.00 | | LR-09-02 | 5763408 | 419638 | 295 | 155.0 | -80.0 | 78.00 | | LR-09-03 | 5763417 | 419669 | 297 | 335.0 | -80.0 | 83.20 | | LR-09-04 | 5763458 | 419655 | 300 | 155.0 | -45.0 | 114.00 | | LR-09-05 | 5763357 | 419692 | 294 | 335.0 | -45.0 | 114.00 | | LR-09-06 | 5763371 |
419723 | 295 | 335.0 | -45.0 | 108.00 | | LR-09-07 | 5763412 | 419705 | 297 | 335.0 | -45.0 | 114.00 | | LR-09-08 | 5763348 | 419733 | 296 | 335.0 | -50.0 | 201.00 | | LR-09-09 | 5763411 | 419735 | 297 | 335.0 | -50.0 | 111.00 | | LR-09-10 | 5763351 | 419762 | 298 | 335.0 | -50.0 | 108.00 | | LR-10-11 | 5763350 | 419763 | 299 | 335.0 | -80.0 | 81.00 | | LR-10-12 | 5763324 | 419776 | 300 | 335.0 | -80.0 | 150.00 | | LR-10-13 | 5763276 | 419799 | 301 | 335.0 | -80.0 | 84.00 | | LR-10-14 | 5763309 | 419822 | 303 | 335.0 | -80.0 | 90.00 | | LR-10-15 | 5763373 | 419784 | 299 | 335.0 | -80.0 | 93.00 | | LR-10-16 | 5763427 | 419760 | 299 | 335.0 | -80.0 | 102.00 | | LR-10-17 | 5763282 | 419762 | 300 | 335.0 | -80.0 | 60.00 | | LR-10-18 | 5763306 | 419708 | 296 | 335.0 | -80.0 | 84.00 | | LR-10-19 | 5763380 | 419618 | 295 | 335.0 | -80.0 | 87.00 | | LR-10-20 | 5763343 | 419837 | 303 | 335.0 | -80.0 | 102.00 | | LR-10-21 | 5763259 | 419696 | 295 | 335.0 | -80.0 | 60.00 | | LR-10-22 | 5763285 | 419663 | 295 | 335.0 | -80.0 | 60.00 | | LR-10-23 | 5763374 | 419820 | 302 | 335.0 | -80.0 | 120.00 | | LR-10-24 | 5763446 | 419785 | 302 | 335.0 | -80.0 | 117.00 | | LR-10-25 | 5763410 | 419801 | 298 | 335.0 | -80.0 | 102.00 | | LR-10-26 | 5763477 | 419769 | 305 | 335.0 | -80.0 | 141.00 | | LR-10-27 | 5763468 | 419743 | 305 | 335.0 | -80.0 | 123.00 | | LR-10-28 | 5763465 | 419712 | 304 | 335.0 | -80.0 | 117.00 | | LR-10-29 | 5763456 | 419688 | 302 | 335.0 | -80.0 | 105.00 | | LR-10-30 | 5763468 | 419610 | 298 | 335.0 | -80.0 | 114.00 | | LR-10-31 | 5763415 | 419604 | 292 | 335.0 | -80.0 | 105.00 | | LR-10-32 | 5763403 | 419564 | 292 | 335.0 | -80.0 | 69.00 | | LR-10-33 | 5763479 | 419578 | 297 | 136.0 | -80.0 | 120.00 | | LR-10-34 | 5763491 | 419603 | 299 | 335.0 | -80.0 | 141.00 | | LR-10-35 | 5763499 | 419649 | 304 | 335.0 | -80.0 | 159.00 | | LR-10-36 | 5763520 | 419688 | 306 | 335.0 | -80.0 | 153.00 | | LR-10-37 | 5763517 | 419750 | 309 | 335.0 | -80.0 | 138.00 | | LR-10-38 | 5763533 | 419794 | 308 | 335.0 | -80.0 | 150.00 | | LR-10-39 | 5763484 | 419819 | 308 | 335.0 | -80.0 | 141.00 | | LR-10-40 | 5763443 | 419842 | 299 | 335.0 | -80.0 | 123.00 | | <u>u uriii i</u> | ioles oil | tile ivo | se uep | OSIL | | | |------------------|-----------|----------|-----------|----------|-------|--------| | Hole | UTM83 2 | | Elevation | Azimuth | Dip | Length | | Tiole | Easting | Northing | (m) | Azimutii | Dip | (m) | | LR-10-41 | 5763384 | 419872 | 306 | 335.0 | -80.0 | 116.65 | | LR-10-42 | 5763320 | 419890 | 305 | 335.0 | -80.0 | 126.00 | | LR-10-43 | 5763336 | 419933 | 310 | 335.0 | -80.0 | 129.00 | | LR-10-44 | 5763390 | 419908 | 308 | 335.0 | -80.0 | 129.00 | | LR-10-45 | 5763439 | 419885 | 304 | 335.0 | -80.0 | 135.00 | | LR-10-46 | 5763496 | 419860 | 304 | 335.0 | -80.0 | 150.00 | | LR-10-47 | 5763547 | 419836 | 303 | 335.0 | -80.0 | 153.00 | | LR-10-48 | 5763546 | 419894 | 303 | 335.0 | -80.0 | 159.00 | | LR-10-49 | 5763479 | 419931 | 305 | 335.0 | -80.0 | 156.00 | | LR-10-50 | 5763436 | 419955 | 308 | 155.0 | -80.0 | 156.00 | | LR-10-51 | 5763377 | 419969 | 312 | 335.0 | -80.0 | 162.00 | | LR-10-52 | 5763325 | 419994 | 311 | 335.0 | -80.0 | 105.00 | | LR-10-53 | 5763215 | 420050 | 309 | 335.0 | -80.0 | 75.00 | | LR-10-54 | 5763160 | 420069 | 317 | 335.0 | -80.0 | 102.00 | | LR-10-55 | 5763107 | 420139 | 306 | 335.0 | -80.0 | 51.00 | | LR-10-56 | 5763121 | 420199 | 306 | 335.0 | -80.0 | 45.00 | | LR-10-57 | 5763159 | 420234 | 308 | 335.0 | -80.0 | 75.00 | | LR-10-58 | 5763166 | 420121 | 313 | 335.0 | -80.0 | 45.00 | | LR-10-59 | 5763224 | 420099 | 308 | 335.0 | -80.0 | 51.00 | | LR-10-60 | 5763274 | 420076 | 306 | 335.0 | -80.0 | 75.00 | | LR-10-61 | 5763255 | 420027 | 306 | 335.0 | -80.0 | 51.00 | | LR-10-62 | 5763328 | 420048 | 310 | 155.0 | -80.0 | 132.00 | | LR-10-63 | 5763381 | 420024 | 318 | 155.0 | -80.0 | 102.00 | | LR-10-64 | 5763427 | 420001 | 313 | 155.0 | -80.0 | 165.00 | | LR-10-65 | 5763491 | 419973 | 302 | 155.0 | -80.0 | 165.00 | | LR-10-66 | 5763540 | 419952 | 298 | 155.0 | -80.0 | 156.00 | | LR-10-67 | 5763601 | 419925 | 301 | 155.0 | -80.0 | 174.00 | | LR-10-68 | 5763615 | 419973 | 298 | 155.0 | -80.0 | 189.00 | | LR-10-69 | 5763557 | 420002 | 303 | 155.0 | -80.0 | 183.00 | | LR-10-70 | 5763500 | 420026 | 311 | 155.0 | -80.0 | 102.00 | | LR-10-71 | 5763340 | 420098 | 313 | 155.0 | -80.0 | 111.00 | | LR-10-72 | 5763283 | 420122 | 309 | 155.0 | -80.0 | 63.00 | | LR-10-73 | 5763230 | 420144 | 309 | 155.0 | -80.0 | 54.00 | | LR-10-74 | 5763175 | 420172 | 310 | 155.0 | -80.0 | 51.00 | | LR-10-75 | 5763391 | 420077 | 317 | 155.0 | -80.0 | 84.00 | | LR-10-76 | 5763196 | 420218 | 310 | 155.0 | -80.0 | 51.00 | | LR-10-77 | 5763249 | 420193 | 310 | 155.0 | -80.0 | 60.00 | | LR-10-78 | 5763306 | 420169 | 311 | 155.0 | -80.0 | 69.00 | | LR-10-79 | 5763361 | 420145 | 314 | | -80.0 | 87.00 | | LR-10-80 | 5763409 | 420121 | 318 | 155.0 | | 102.00 | | | | | | | | | Table 11.2 (cont'd) - First Gold's diamond drill holes on the Rose deposit | | Table | 11.2 (6 | <u> </u> | - 1 1131 | <u> </u> | <u>u </u> | |-----------|---------|----------|-----------|------------|----------|--| | Hole | UTM83 2 | one 18 | Elevation | Azimuth | Dip | Length | | noie | Easting | Northing | (m) | Aziiiiutii | ыр | (m) | | LR-10-81 | 5763468 | 420095 | 317 | 155.0 | -80.0 | 180.00 | | LR-10-82 | 5763520 | 420074 | 310 | 155.0 | -80.0 | 171.00 | | LR-10-83 | 5763571 | 420051 | 303 | 155.0 | -80.0 | 201.00 | | LR-10-84 | 5763629 | 420024 | 299 | 155.0 | -80.0 | 207.00 | | LR-10-85 | 5763655 | 420069 | 295 | 136.0 | -80.0 | 228.00 | | LR-10-86 | 5763599 | 420089 | 305 | 155.0 | -80.0 | 210.00 | | LR-10-87 | 5763535 | 420122 | 308 | 155.0 | -80.0 | 192.00 | | LR-10-88 | 5763450 | 420046 | 317 | 136.0 | -80.0 | 99.00 | | LR-10-89 | 5763484 | 420148 | 313 | 155.0 | -80.0 | 99.00 | | LR-10-90 | 5763436 | 420174 | 315 | 155.0 | -80.0 | 99.00 | | LR-10-91 | 5763382 | 420201 | 313 | 155.0 | -80.0 | 87.00 | | LR-10-92 | 5763325 | 420230 | 313 | 155.0 | -80.0 | 72.00 | | LR-10-93 | 5763264 | 420239 | 312 | 155.0 | -80.0 | 60.00 | | LR-10-94 | 5763217 | 420264 | 309 | 155.0 | -80.0 | 42.00 | | LR-10-95 | 5763181 | 420281 | 306 | 155.0 | -80.0 | 27.00 | | LR-10-96 | 5763226 | 420306 | 306 | 155.0 | -80.0 | 51.00 | | LR-10-97 | 5763288 | 420285 | 311 | 152.0 | -78.0 | 99.00 | | LR-10-98 | 5763352 | 420267 | 312 | 155.0 | -80.0 | 105.00 | | LR-10-99 | 5763396 | 420246 | 312 | 155.0 | -80.0 | 108.00 | | LR-10-100 | 5763455 | 420209 | 313 | 155.0 | -80.0 | 105.00 | | LR-10-101 | 5763505 | 420185 | 309 | 155.0 | -80.0 | 108.00 | | LR-10-102 | 5763573 | 420157 | 309 | 155.0 | -80.0 | 126.00 | | LR-10-103 | 5763612 | 420137 | 308 | 155.0 | -80.0 | 144.00 | | LR-10-104 | 5763670 | 420108 | 295 | 152.0 | -78.0 | 147.00 | | LR-10-105 | 5763718 | 420085 | 295 | 155.0 | -80.0 | 159.00 | | LR-10-106 | 5763712 | 420138 | 295 | 155.0 | -80.0 | 183.00 | | LR-10-107 | 5763674 | 420156 | 295 | 155.0 | -80.0 | 150.00 | | LR-10-108 | 5763609 | 420190 | 306 | 155.0 | -80.0 | 138.00 | | LR-10-109 | 5763555 | 420219 | 304 | 155.0 | -80.0 | 138.00 | | LR-10-110 | 5763505 | 420239 | 308 | 155.0 | -80.0 | 114.00 | | LR-10-111 | 5763449 | 420266 | 311 | 155.0 | -80.0 | 117.00 | | LR-10-112 | 5763400 | 420287 | 311 | 155.0 | -80.0 | 114.00 | | LR-10-113 | 5763346 | 420315 | 310 | 155.0 | -80.0 | 102.00 | | LR-10-114 | 5763300 | 420335 | 309 | 155.0 | -80.0 | 84.00 | | LR-10-115 | 5763255 | 420358 | 305 | 155.0 | -80.0 | 63.00 | | LR-10-116 | 5763285 | 420390 | 305 | 140.0 | -78.0 | 69.00 | | LR-10-117 | 5763358 | 420364 | 309 | 155.0 | -80.0 | 108.00 | | LR-10-118 | 5763412 | 420342 | 310 | 155.0 | -80.0 | 114.00 | | LR-10-119 | 5763467 | 420311 | 308 | 155.0 | -80.0 | 123.00 | | LR-10-120 | 5763522 | 420289 | 305 | 155.0 | -80.0 | 123.00 | | liona a | LITAGO | 2 10 | | асро | | 1 | |-----------|---------|----------|-----------|---------|-------|--------| | Hole | UTM83 2 | one 18 | Elevation | Azimuth | Dip | Length | | | Easting | Northing | (m) | | | (m) | | LR-10-121 | 5763578 | 420269 | 300 | 155.0 | -80.0 | 135.00 | | LR-10-122 | 5763622 | 420245 | 300 | 155.0 | -80.0 | 135.00 | | LR-10-123 | 5763688 | 420214 | 293 | 155.0 | -80.0 | 174.00 | | LR-10-124 | 5763741 | 420191 | 293 | 155.0 | -80.0 | 201.00 | | LR-10-125 | 5763757 | 420238 | 291 | 155.0 | -80.0 | 204.00 | | LR-10-126 | 5763700 | 420265 | 291 | 155.0 | -80.0 | 159.00 | | LR-10-127 | 5763639 | 420292 | 296 | 155.0 | -80.0 | 177.00 | | LR-10-128 | 5763592 | 420311 | 294 | 155.0 | -80.0 | 135.00 | | LR-10-129 | 5763535 | 420340 | 303 | 155.0 | -80.0 | 135.00 | | LR-10-130 | 5763477 | 420364 | 308 | 155.0 | -80.0 | 123.00 | | LR-10-131 | 5763428 | 420389 | 309 | 155.0 | -80.0 | 120.00 | | LR-10-132 | 5763373 | 420412 | 307 | 155.0 | -80.0 | 105.00 | | LR-10-133 | 5763319 | 420436 | 304 | 155.0 | -80.0 | 87.00 | | LR-10-134 | 5763315 | 420491 | 298 | 155.0 | -80.0 | 90.00 | | LR-10-135 | 5763378 | 420470 | 305 | 155.0 | -80.0 | 117.00 | | LR-10-136 | 5763426 | 420441 | 307 | 155.0 | -80.0 | 129.00 | | LR-10-137 | 5763484 | 420416 | 306 | 155.0 | -80.0 | 132.00 | | LR-10-138 | 5763532 | 420395 | 304 | 167.0 | -80.0 | 153.00 | | LR-10-139 | 5763599 | 420365 | 293 | 140.0 | -78.0 | 150.00 | Total 65 holes: 16,321.85 Figure 11.1 – Diamond drill holes conducted by First Gold on the Pivert-Rose property Figure 11.2 - Diamond drill holes conducted by First Gold on the Rose deposit Figure 11.3 – Diamond drill holes conducted by First Gold on the Pivert showing # 12.0 SAMPLING METHOD AND APPROACH (Item 14) The drill core and channel sampling method and approach was established by Consul-Teck. The drill core is boxed, covered and sealed at the drill rig and moved to the side of the main gravel road by the drillers where they are piled either on the ground or on a trailer. Consul-Teck personnel then carry the boxes once or twice a week to the core logging and sample preparation facility
in Val d'Or. After being examined and described (logged), the core is sampled according to an established protocol. The core of the selected section is first cut in half using a typical table-feed circular rock saw, with one half put aside for eventual shipment to the laboratory. The second half of the core is then put back in its place in the core box, and a tag bearing the same number is placed at the end of the sawed core halves forming the sampled length. Core sample intervals are selected based on the presence of favourable geological units (pegmatite) and placed into sample bags before being shipped to the assay lab. First Gold's channel samples from the Pivert-Rose property have been referred to in company press releases as "non-chosen grab samples" because they are not like traditional channel samples: they were randomly oriented and of variable lengths. The channel samples were used in lieu of grab samples since the latter were very difficult or impossible to obtain from the smooth, hard outcrops surfaces using a hammer and chisel. Similar to grab samples, the channel samples were thus selective by nature and unlikely to represent average grades. The purpose of such sampling was to rapidly determine if the mineralization was constant throughout the outcropping pegmatite. The author examined some of the channel samples during his visit to the Pivert-Rose property. They were approximately 5 centimetres wide and cut with a motorized circular saw to a depth of approximately 5 centimetres. Most were approximately one metre long and entirely within pegmatite dykes. As mentioned above, they were not necessarily perpendicular to the interpreted strike of the pegmatite. According to the issuer, samples were placed whole into bags before sending to the laboratory. Most core samples range from 0.10 to 2.00 metre long with few exceptions exceeding 2.00 metres as discussed in Section 14 (*Data verification – Item 16*). Every pegmatite unit was systematically sampled. Based on the author's observation of the core, samples collected by diamond drilling are generally intact with little possibility of loss due to wash out and are considered to be of good quality. Overall, the drill core sample recovery from the mineralized zones is considered representative. There is no indication of anything in the drilling, core handling and sampling procedures, or in the sampling methods and approach, that could have had a negative impact on the reliability of the reported assay results. # 13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY (Item 15) Consul-Teck's core logging facility in Val-d'Or was used for the drilling program. Sample preparation, analyses and security protocols for First Gold's drilling program were defined by Consul-Teck. Assays were mostly performed at the independent and accredited ALS-Chemex laboratory in Val-d'Or, but nine (9) of the first grab samples (430901 to 430909) were sent to Techni-Lab S.G.B Abitibi Inc in Ste-Germaine-Boulé, Québec. After being logged and sampled at Consul-Teck's Val-d'Or facility, the samples are delivered to the laboratory by Consul-Teck personnel. Upon arrival at the ALS-Chemex laboratories (ALS), the samples are dried then crushed (jaw crushers) to 70% passing 10 mesh (i.e., 2mm). Samples were then riffle-split (Jones riffle splitters) to reduce the sample size for pulverisation to a maximum of 1 kg. The 1-kg samples were then pulverized (ring and puck) to 85% passing 200 mesh (i.e., 75 μ m). Analytical protocols required all samples be analyzed for 48 elements using the Ultra-Trace Level method using ICP MS and ICP-AES (ALS internal code ME-MS61). The ALS protocol for this type of analysis stipulates that a prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and analyzed by inductively coupled plasma—atomic emission spectrometry (ICP-AES). Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver or tungsten and diluted accordingly. Samples meeting this criterion are then analyzed by inductively coupled plasma—mass spectrometry (ICP-MS). Results are corrected for spectral inter-element interferences. ALS also notes that although four-acid digestion is able to dissolve most minerals, the term "near-total digestion" is used because not all elements may be quantitatively extracted, depending on the sample matrix. In the case where Li is higher than the detection limit of the ME-MS61 method, selected samples are then analyzed using the ALS Ore Grade Lithium method by four-acid digestion with ICP-AES finish (ALS internal code Li-OG63). Approximately 0.4 g is first digested with $HCIO_4$, HF and HNO_3 until dryness. The residue is subsequently re-digested in concentrated HCI, cooled and topped up to volume. The samples are analyzed for Li by ICP-AES spectroscopy. In the case where Ta and/or Cs were higher than the detection limit of the ME-MS61 method, selected samples are then analyzed using the ALS Pressed Pellet Geochemical Procedure method (ALS internal code ME-XRF05). A finely ground sample powder (10-g minimum) is mixed with a few drops of liquid binder (Polyvinyl Alcohol) and then transferred into an aluminum cap. The sample is subsequently compressed under approximately 30 tons/in² in a pellet press. After pressing, the pellet is dried to remove the solvent and analyzed by WDXRF spectrometry for the desired elements. In addition to the regular sampling and assaying of samples, Consul-Teck externally initiated additional quality control protocols by preparing various duplicate samples to evaluate the precision (i.e., reproducibility) and accuracy (i.e., correctness) of the values reported. According to the company database, a total of 121 samples were duplicated. In addition, 127 blank samples were inserted in the batches sent to the laboratory in order to verify the absence of contamination in the preparation process. ALS Chemex also conducts internal quality control protocols. The laboratory delivered results in electronic format by e-mail sent uniquely to Jean-Sébastien Lavallée. Assay results were then transferred directly into the First Gold database. There is no indication of anything in the core handling and sample preparation that could have had a negative impact on the reliability of the reported assay results. ## 14.0 DATA VERIFICATION (Item16) The grades for Li, Ta, Rb, Cs, and Be are reported in this section as parts per million (ppm) for each element. Refer to Table 2.1 for converting into Li2O, Ta2O5, Rb2O, Cs2O, and BeO (as these elements may also be reported). Note that 10,000ppm equals 1%. ### 14.1 Historical Work Historical information used in this report was taken mainly from reports by the Québec government's geological survey as part of large regional programs. Little information is available about sample preparation or analytical and security procedures for the historical work in the reviewed documents. However, InnovExplo assumes that the various exploration activities conducted by the Québec government's geological survey were in accordance with prevailing industry standards at the time. Only one historical drill hole can be found on the current Pivert-Rose property. There was therefore no historical database for the author to validate. #### 14.2 First Gold Database The First Gold ACCESS database comprises 142 NQ-size diamond drill holes totalling 16,673.45 metres. A total of 3,128 core samples (46 from the Pivert showing) are included as well as 248 QA/QC samples (blanks and duplicates). The author was granted access to the official results from the ALS Chemex Laboratory for all holes and grab samples discussed in this report (holes LP-09-01 to LP-09-03 and holes LR-09-01 to LR-10-139). The author downloaded every certificate directly from the laboratory and built the tables presented in this report using the information contained therein. Very few errors were noted in First Gold's database, all of which are minor and of the type normally encountered in a project database, and none that would affect its integrity. The overall database is of a very good quality. One type of error evidently occurred during data transfer. As an example, the database lists the results for sample 916311 (hole LR-10-19, 79.5m to 80.5m) as 320% Li, 60 ppm Ta and 2 ppm Cs. The correct values, however, are 70 ppm Li, 320 ppm Ta, and 60 ppm Cs. The error arises from laboratory results being accidentally transferred into the wrong element columns. The incorrect values were never reported, so it is not necessary to correct any prior disclosure. The few errors of this type have now been corrected in the database. The other type of error was a single case of overlapping samples, in which the indicated lengths for sample 26003 (10.50m to 11.40m) and sample 929428 (10.70m to 11.10m) overlap within the same drill hole (LR-09-02). This is likely a typing mistake without any significant repercussion on the database, and correction from the source (core boxes) should clarify the situation. Overall, InnovExplo believes that First Gold's database for the Pivert-Rose project is valid and reliable. Dip -45 -45 -43 -82 -80 -75 -80 -80 -80 -80 ### 14.2.1 First Gold Drilling Every collar was surveyed using a handheld GPS. Although a professional survey program is recommended to gain better control on collar locations and elevations, the surveys are considered acceptable at this point in the project. The great majority of the holes were surveyed by a Flexit instrument (single shots approximately every 60 m). Since the casings have never been professionally surveyed, the author randomly selected eleven casings for location and attitude verification. Table 14.1 summarizes the cross-reference with the First Gold database while Figure 14.1 shows some of the casings that were examined during the author's site visit on behalf of
InnovExplo. While most of the holes on the Rose deposit are oriented N335 (57 holes) at N155 (74), two (2) were drilled at N152, five (5) at N136-N140 and one (1) at N167. Before hole LR-09-11, the dip was mostly -45 or -50. From hole LR-10-11 onward, the dip has been systematically -78 or -80 (subvertical). Drilling was underway (Hole LR-10-86) when the author visited the site (Fig. 14.2). The author visited the drill rig during the site visit and witnessed approximately 9 metres of core being pulled from underground. The author observed spodumene in the core section. Table 14.1 – Verification of casing locations and attitudes on the Rose deposit | | | First Gold database | | | | | Measured by InnovExpl | | | | |-----------|---------------|---------------------|-----------|-----|--|---------------|-----------------------|-----------|--|--| | DDH | UTM83 Zone 18 | | Direction | Dip | | UTM83 Zone 18 | | Direction | | | | | Easting | Northing | | ыр | | Easting | Northing | | | | | LR-09-01 | 419683 | 5763334 | 335 | -45 | | 419674 | 5763336 | 335 | | | | LR-09-02 | 419638 | 5763409 | 335 | -45 | | 419639 | 5763407 | 160 | | | | LR-09-04 | 419652 | 5763461 | 155 | -45 | | 419654 | 5763461 | 160 | | | | LR-10-21 | 419700 | 5763260 | 335 | -80 | | 419695 | 5763260 | 320 | | | | LR-10-25 | 419802 | 5763413 | 335 | -80 | | 419802 | 5763413 | 330 | | | | LR-10-33 | 419578 | 5763471 | 136 | -80 | | 419577 | 5763479 | 332 | | | | LR-10-43 | 419937 | 5763332 | 335 | -80 | | 419930 | 5763333 | 315 | | | | LR-10-45 | 419888 | 5763441 | 335 | -80 | | 419885 | 5763440 | 330 | | | | LR-10-54 | 420068 | 5763162 | 335 | -80 | | 420070 | 5763164 | 315 | | | | LR-10-57 | 420242 | 5763141 | 335 | -80 | | 420231 | 5763161 | 330 | | | | LR-10-86* | 420091 | 5763599 | 155 | -80 | | 420091 | 5763598 | | | | Figure 14.1 – Photos of some of the casing locations that were verified on the Pivert-Rose property: A) LP-09-03; B) LR-09-02; C) LR-10-33; D) LR-10-57. Figure 14.2 – Drilling at the Rose deposit: A) Drill rig in action on Hole LR-10-86 at the time of the field visit; B) to D) Views of the Rose pegmatite in core that was drilled in presence of the author. Photos taken by the author during the field visit. ### 14.2.2 First Gold outcrop sampling As discussed in section 12.0, First Gold's channel samples from the Pivert-Rose property have been referred to in company press releases as "non-chosen grab samples" because they are not like traditional channel samples: they were not necessarily perpendicular to the interpreted strike of the pegmatite and were of variable lengths. The channel samples were used in lieu of grab samples since the latter were very difficult or impossible to obtain from the smooth, hard outcrops surfaces using a hammer and chisel. Similar to grab samples, the channel samples were thus selective by nature and unlikely to represent average grades. The purpose of such sampling was to rapidly determine if the mineralization was constant throughout the outcropping pegmatite. For this reason, channel samples from the Pivert-Rose project to date should be considered as grab samples and therefore *not* be taken into account in a future resource estimate, even with proper surveying. ### 14.2.3 First Gold sampling and assaying procedures InnovExplo reviewed several mineralized core sections while visiting the core storage facility in Val-d'Or (Fig. 14.3). All the core boxes were labelled and properly stored outside. Sample tags, located at the end of each sample, were still present in the boxes. Marks on the bottom of the box were also found, delineating sample intervals. It was possible to validate sample numbers and the presence of spodumene for each of the samples in the mineralized zones. Figure 14.3 – Core verification at the core storage facility in Val-d'Or: A) General view of the facility and some of the boxes that were examined; B) and C) Hole LR-10-11; D) and E) Hole LR-10-27; F) and G) Hole LR-10-55. Photos taken by the author. The author reviewed and judged adequate the entire path taken by the drill core, from drill rig to the logging and sampling facility (Fig. 14.4). Core sample lengths were also reviewed by the author. After proper corrections were conducted from First Gold, of the 3,083 reviewed samples from the Rose deposit, only four (4) were found to be 2.00 metres or longer (3.35m being the maximum), and 470 were less than 0.50 metre. The smallest sample was 0.15 metres long. Figure 14.4 – Path of the core from drill rig to final storage facility: A) Drill rig on the Rose deposit; B) Core carefully boxed and ready for transport by Consul-Teck personnel to the Val-d'Or facility; C) Consul-Teck logging facility where the core is logged and marked for sampling; D) Core splitter used to sample the core; E) Half-core bagged by Consul-Teck personnel and later shipped to the assay laboratory; F) Core adequately stored outside in roofed-racks. Photos were taken by the author during his visit of the property and the Val-d'Or facility. A recent study by one of the author revealed that the grade versus sample length graph shows a very homogeneous distribution for all the elements considered (Li, Rb, Cs, Be, Ta, Ga), without any detectable bias due to small interval sampling (Fig. 14.5). It was judged appropriate to conduct a review of the grades versus sample lengths considering that more than 20% (309 out of 1,514 from holes LR-09-01 to LR-10-68) of the samples in the database were less than 0.50 metre long. This kind of sampling procedure can sometimes hide high grade values derived from small samples by spreading them over longer composite intervals when a suitable capping grade has not been applied. The updated database up to hole LR-10-139 shows that now 15% (470 out of 3,083) of the samples are less than 0.50m. Figure 14.5 – Verification of grades versus sample lengths from First Gold drill holes # 14.2.4 First Gold Quality Control The quality control database for drill core assays contains 127 blank and 121 core duplicate samples that were sent to ALS Chemex Laboratories as part of the program. Core duplicates are quarter-splits from what is left in the box after taking the original half-split sample. Certified Standards were not included in the sample protocol. According to the database, not every hole had blanks and/or core duplicates, but the majority did (Tables 14.2 and 14.3). Field duplicates returned values similar to original assays (Fig. 14.6) with the only exception of Be that shows less coherence. Only three blanks (samples 738810, 747847 and 883661) returned abnormally high results. Analyzing the weights received at the laboratory, sample 747847 is believed to be attributed to erroneous tag identification rather than a laboratory issue. However, the two batches containing samples 738810 and 883661 should be quarter split and reassayed with new blanks and duplicates. With the exception of those two suspicious batches, no significant contamination was observed. Figure 14.6 – Verification of core duplicates Table 14.2 – Verification of blanks | Sample | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |--------|-------------|----------|----------|----------|----------|----------|----------| | 4510 | 0.05 | 1 | 1 | 18 | 26 | 50 | 1 | | 4536 | 0.04 | 1 | 1 | 18 | 26 | 37 | 0 | | 4561 | 0.04 | 1 | 2 | 19 | 28 | 41 | 1 | | 4586 | 0.05 | 1 | 1 | 18 | 24 | 44 | 1 | | 4611 | 0.04 | 1 | 1 | 18 | 27 | 42 | 1 | | 4636 | 0.04 | 1 | 1 | 17 | 24 | 47 | 0 | | 4661 | 0.04 | 1 | 1 | 17 | 22 | 47 | 1 | | 430868 | 0.06 | 1 | 1 | 18 | 27 | 41 | 1 | | 430882 | 0.06 | 1 | 1 | 17 | 50 | 40 | 1 | | 430924 | 0.06 | 1 | 2 | 18 | 30 | 41 | 1 | | 430947 | 0.04 | 1 | 1 | 15 | 30 | 40 | 1 | | 718435 | 0.04 | 1 | 1 | 18 | 28 | 42 | 1 | | 718454 | 0.04 | 2 | 2 | 22 | 40 | 60 | 1 | | 738010 | 0.04 | 1 | 1 | 10 | 22 | 31 | 1 | | 738035 | 0.04 | 1 | 1 | 11 | 18 | 33 | 0 | | 738061 | 0.04 | 1 | 1 | 11 | 25 | 34 | 0 | | 738085 | 0.05 | 1 | 1 | 13 | 19 | 27 | 0 | | 738110 | 0.05 | 1 | 1 | 13 | 16 | 30 | 0 | | 738136 | 0.04 | 1 | 1 | 11 | 17 | 28 | 0 | | 738171 | 0.05 | 1 | 1 | 12 | 21 | 32 | 0 | | 738180 | 0.05 | 1 | 1 | 12 | 18 | 33 | 0 | | 738210 | 0.02 | 1 | 1 | 12 | 16 | 34 | 0 | | 738230 | 0.02 | 1 | 1 | 12 | 16 | 35 | 0 | | 738260 | 0.04 | 1 | 1 | 12 | 15 | 29 | 0 | | 738280 | 0.05 | 1 | 1 | 12 | 16 | 34 | 0 | | 738309 | 0.05 | 1 | 1 | 12 | 42 | 28 | 0 | | 738332 | 0.04 | 1 | 1 | 12 | 24 | 27 | 0 | | 738360 | 0.05 | 1 | 1 | 11 | 29 | 27 | 0 | | 738383 | 0.03 | 1 | 1 | 11 | 22 | 29 | 0 | | 738412 | 0.04 | 1 | 1 | 12 | 14 | 28 | 1 | | 738432 | 0.03 | 1 | 1 | 10 | 19 | 30 | 0 | | 738460 | 0.03 | 1 | 1 | 12 | 21 | 27 | 1 | | Sample | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |--------|-------------|----------|----------|----------|----------|----------|----------| | 738485 | 0.03 | 1 | 1 | 13 | 20 | 30 | 0 | | 738507 | 0.03 | 1 | 1 | 12 | 18 | 30 | 0 | | 738528 | 0.03 | 1 | 1 | 12 | 24 | 27 | 0 | | 738558 | 0.05 | 1 | 1 | 11 | 17 | 28 | 0 | | 738584 | 0.03 | 1 | 1 | 12 | 18 | 25 | 0 | | 738608 | 0.05 | 1 | 1 | 12 | 16 | 33 | 0 | | 738633 | 0.04 | 1 | 1 | 12 | 19 | 33 | 0 | | 738661 | 0.03 | 1 | 1 | 12 | 25 | 33 | 0 | | 738683 | 0.03 | 1 | 1 | 11 | 15 | 27 | 0 | | 738706 | 0.04 | 1 | 1 | 12 | 26 | 34 | 0 | | 738734 | 0.04 | 1 | 1 | 13 | 17 | 27 | 0 | | 738759 | 0.04 | 1 | 1 | 12 | 16 | 30 | 0 | | 738786 | 0.04 | 1 | 1 | 10 | 23 | 27 | 0 | | 738810 | 0.04 | 259 | 75 | 73 | 7470 | 2110 | 150 | | 738835 | 0.04 | 2 | 1 | 11 | 17 | 34 | 0 | | 738861 | 0.04 | 1 | 1 | 11 | 18 | 27 | 0 | | 738881 | 0.04 | 1 | 1 | 11 | 18 | 35 | 0 | | 738910 | 0.04 | 1 | 2 | 11 | 23 | 31 | 0 | | 738936 | 0.04 | 1 | 1 | 12 | 26 | 27 | 0 | | 738958 | 0.04 | 1 | 1 | 12 | 15 | 29 | 0 | | 747560 | 0.06 | 1 | 2 | 16 | 23 | 38 | 1 | | 747588 | 0.06 | 1 | 1 | 18 | 28 | 51 | 0 | | 747613 | 0.06 | 1 | 1 | 16 | 25 | 46 | 0 | | 747635 | 0.04 | 1 | 2 | 16 | 27 | 44 | 1 | | 747660 | 0.04 | 1 | 1 | 18
| 26 | 42 | 1 | | 747681 | 0.04 | 1 | 1 | 14 | 20 | 35 | 0 | | 747707 | 0.04 | 1 | 2 | 17 | 29 | 43 | 1 | | 747731 | 0.04 | 1 | 1 | 18 | 31 | 47 | 1 | | 747761 | 0.04 | 1 | 2 | 18 | 27 | 45 | 1 | | 747776 | 0.04 | 1 | 2 | 17 | 24 | 43 | 1 | | 747801 | 0.05 | 1 | 1 | 16 | 23 | 38 | 1 | | 747825 | 0.04 | 1 | 1 | 18 | 24 | 38 | 1 | Table 14.2 (cont'd) - Verification of blanks | | | | | | Iak | NE 14.2 (| cont a | |--------|-------------|----------|----------|----------|----------|-----------|----------| | Sample | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | | 747847 | 0.46 | 147 | 70 | 73 | 4060 | 1650 | 120 | | 747853 | 0.04 | 1 | 1 | 18 | 27 | 39 | 1 | | 747879 | 0.05 | 2 | 2 | 19 | 68 | 55 | 1 | | 747905 | 0.04 | 1 | 2 | 18 | 34 | 41 | 1 | | 747930 | 0.04 | 1 | 1 | 17 | 26 | 45 | 0 | | 747957 | 0.04 | 1 | 1 | 17 | 30 | 42 | 1 | | 747981 | 0.05 | 1 | 2 | 18 | 27 | 44 | 1 | | 883610 | 0.04 | 4 | 58 | 25 | 890 | 283 | 2 | | 883635 | 0.04 | 1 | 1 | 9 | 13 | 26 | 1 | | 883661 | 0.04 | 117 | 44 | 78 | 8390 | 1350 | 105 | | 883685 | 0.04 | 1 | 1 | 13 | 19 | 36 | 0 | | 883710 | 0.04 | 1 | 1 | 12 | 13 | 26 | 0 | | 883735 | 0.04 | 1 | 1 | 12 | 14 | 26 | 0 | | 883760 | 0.04 | 1 | 1 | 11 | 15 | 25 | 0 | | 883786 | 0.04 | 1 | 1 | 12 | 15 | 27 | 0 | | 883809 | 0.04 | 1 | 1 | 12 | 19 | 29 | 1 | | 883834 | 0.04 | 1 | 1 | 12 | 11 | 26 | 0 | | 883856 | 0.04 | 1 | 1 | 11 | 17 | 26 | 0 | | 883881 | 0.04 | 1 | 1 | 11 | 15 | 25 | 0 | | 916124 | 0.04 | 1 | 2 | 17 | 24 | 45 | 1 | | 916160 | 0.04 | 1 | 1 | 17 | 24 | 45 | 1 | | 916185 | 0.04 | 1 | 2 | 18 | 31 | 44 | 1 | | 916212 | 0.04 | 1 | 2 | 18 | 54 | 51 | 3 | | 916227 | 0.04 | 1 | 1 | 16 | 36 | 47 | 1 | | 916240 | 0.04 | 1 | 2 | 18 | 30 | 40 | 1 | | 916257 | 0.04 | 1 | 2 | 18 | 26 | 42 | 1 | | 916271 | 0.04 | 1 | 2 | 18 | 32 | 43 | 1 | | 916300 | 0.04 | 1 | 2 | 19 | 41 | 44 | 1 | | 916327 | 0.04 | 1 | 2 | 18 | 36 | 47 | 1 | | 916350 | 0.04 | 1 | 1 | 18 | 38 | 43 | 1 | | 916387 | 0.04 | 1 | 1 | 17 | 35 | 41 | 1 | | 916399 | 0.04 | 1 | 1 | 17 | 37 | 43 | 1 | | Sample | Weight (kg) | | Cs (nnm) | Ga (ppm) | Li (nnm) | Rb (ppm) | Ta (ppm) | |---------|-------------|---|----------|----------|----------|----------|----------| | 916417 | 0.04 | 1 | 1 | 17 | 33 | 44 | 2 | | 916450 | 0.04 | 1 | 1 | 17 | 28 | 48 | 1 | | 916477 | 0.04 | 1 | 2 | 17 | 23 | 48 | 1 | | 916496 | 0.03 | 1 | 1 | 17 | 28 | 45 | 2 | | 916526 | 0.04 | 1 | 1 | 18 | 27 | 39 | 1 | | 916547 | 0.03 | 1 | 1 | 13 | 24 | 34 | 1 | | | | 1 | 2 | | | | 2 | | 916575 | 0.04 | | | 19 | 25 | 45 | | | 916596 | 0.04 | 1 | 1 | 18 | 30 | 48 | 1 | | 916632 | 0.05 | 1 | 1 | 18 | 29 | 48 | 1 | | 916650 | 0.04 | 1 | 1 | 17 | 28 | 47 | 1 | | 916678 | 0.04 | 1 | 2 | 18 | 30 | 44 | 1 | | 916687 | 0.03 | 1 | 1 | 15 | 25 | 40 | 1 | | 916726 | 0.05 | 1 | 2 | 17 | 28 | 49 | 1 | | 916749 | 0.03 | 1 | 1 | 16 | 26 | 48 | 1 | | 916776 | 0.04 | 1 | 2 | 18 | 27 | 47 | 1 | | 916797 | 0.04 | 1 | 2 | 17 | 21 | 46 | 1 | | 946554 | 0.04 | 1 | 1 | 17 | 27 | 47 | 1 | | 946579 | 0.04 | 1 | 1 | 16 | 26 | 46 | 1 | | 946606 | 0.04 | 1 | 2 | 17 | 28 | 44 | 1 | | 946633 | 0.04 | 1 | 1 | 17 | 26 | 44 | 0 | | 946658 | 0.04 | 1 | 2 | 18 | 26 | 47 | 1 | | 946683 | 0.05 | 1 | 2 | 17 | 25 | 41 | 1 | | 946709 | 0.05 | 1 | 1 | 13 | 16 | 31 | 0 | | 946736 | 0.04 | 1 | 1 | 12 | 15 | 30 | 0 | | 962810 | 0.03 | 1 | 1 | 12 | 19 | 26 | 0 | | 962835 | 0.04 | 1 | 1 | 13 | 14 | 27 | 0 | | 962861 | 0.04 | 1 | 1 | 12 | 15 | 27 | 0 | | 1119406 | 0.03 | 1 | 1 | 10 | 11 | 27 | 0 | | 1119432 | 0.04 | 1 | 1 | 12 | 13 | 29 | 0 | | 1119460 | 0.04 | 1 | 9 | 14 | 54 | 126 | 0 | | 1119485 | 0.04 | 1 | 1 | 12 | 24 | 28 | 0 | Table 14.3 – Verification of core duplicates | Sample | DDH | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |--------|-----------|-------------|----------|----------|----------|----------|----------|----------| | 4512 | LR-10-64 | 0.80 | 39 | 21 | 86 | 23 | 470 | 280 | | 4538 | LR-10-66 | 1.20 | 304 | 150 | 64 | 5890 | 4600 | 210 | | 4563 | LR-10-66 | 0.88 | 1 | 14 | 14 | 116 | 29 | 1 | | 4588 | LR-10-70 | 1.13 | 38 | 85 | 84 | 55 | 2940 | 170 | | 4613 | LR-10-71 | 1.41 | 134 | 46 | 92 | 11550 | 1370 | 76 | | 4638 | LR-10-72 | 1.09 | 13 | 253 | 26 | 1240 | 520 | 28 | | 4663 | LR-10-73 | 0.49 | 8 | 79 | 53 | 379 | 1690 | 75 | | 430867 | LR-10-43 | 1.84 | 144 | 95 | 87 | 7750 | 1390 | 105 | | 430881 | LR-10-45 | 1.76 | 215 | 83 | 75 | 9800 | 1720 | 110 | | 430923 | LR-10-46 | 1.78 | 174 | 123 | 79 | 7830 | 2730 | 120 | | 430946 | LR-10-47 | 1.57 | 378 | 100 | 129 | 11200 | 810 | 160 | | 718434 | LR-10-49 | 1.60 | 101 | 71 | 92 | 8320 | 780 | 210 | | 718453 | LR-10-52 | 1.14 | 85 | 117 | 56 | 3540 | 3710 | 80 | | 738020 | LR-10-96 | 0.90 | 10 | 36 | 21 | 270 | 421 | 1 | | 738045 | LR-10-98 | 1.02 | 108 | 98 | 64 | 2040 | 3270 | 73 | | 738072 | LR-10-99 | 0.48 | 165 | 48 | 69 | 4010 | 1420 | 150 | | 738095 | LR-10-100 | 0.81 | 143 | 172 | 65 | 3220 | 7480 | 65 | | 738117 | LR-10-101 | 1.30 | 272 | 94 | 57 | 8230 | 2790 | 32 | | 738142 | LR-10-102 | 1.37 | 51 | 22 | 84 | 13750 | 700 | 190 | | 738173 | LR-10-104 | 0.47 | 9 | 32 | 31 | 281 | 97 | 10 | | 738195 | LR-10-104 | 1.33 | 47 | 61 | 82 | 8300 | 1970 | 120 | | 738215 | LR-10-105 | 1.76 | 233 | 67 | 66 | 7470 | 2290 | 130 | | 738245 | LR-10-106 | 0.78 | 36 | 232 | 47 | 1890 | 8930 | 51 | | 738271 | LR-10-107 | 0.34 | 89 | 39 | 64 | 194 | 1520 | 140 | | 738295 | LR-10-108 | 1.14 | 106 | 60 | 66 | 800 | 800 | 300 | | 738320 | LR-10-108 | 0.82 | 107 | 26 | 74 | 3550 | 630 | 110 | | 738346 | LR-10-109 | 1.68 | 233 | 156 | 89 | 9940 | 1990 | 46 | | 738372 | LR-10-111 | 0.47 | 312 | 152 | 52 | 830 | 5380 | 120 | | | LR-10-112 | 1.69 | 85 | 207 | 56 | 2120 | 8180 | 83 | | 738421 | LR-10-113 | 0.87 | 179 | 37 | 78 | 11850 | 840 | 47 | | Duplicate | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |-----------|-------------|----------|----------|----------|----------|----------|----------| | 4511 | 0.70 | 41 | 32 | 85 | 10 | 690 | 340 | | 4537 | 1.08 | 108 | 125 | 65 | 6440 | 4280 | 160 | | 4562 | 0.95 | 1 | 13 | 14 | 116 | 28 | 1 | | 4587 | 1.01 | 55 | 92 | 85 | 51 | 3080 | 180 | | 4612 | 1.12 | 73 | 36 | 93 | 11850 | 1230 | 96 | | 4637 | 1.19 | 14 | 264 | 24 | 1360 | 490 | 10 | | 4662 | 0.55 | 9 | 74 | 41 | 254 | 1430 | 65 | | 430866 | 1.89 | 128 | 83 | 82 | 7010 | 1220 | 100 | | 430880 | 1.87 | 110 | 41 | 79 | 12100 | 900 | 100 | | 430922 | 1.70 | 176 | 144 | 76 | 6520 | 3230 | 140 | | 430945 | 1.45 | 326 | 94 | 136 | 10400 | 890 | 150 | | 718433 | 1.67 | 76 | 78 | 89 | 7710 | 970 | 220 | | 718452 | 0.84 | 92 | 133 | 59 | 2440 | 4270 | 93 | | 738019 | 0.89 | 11 | 56 | 24 | 292 | 580 | 3 | | 738044 | 1.16 | 115 | 79 | 70 | 2430 | 2530 | 74 | | 738071 | 0.52 | 160 | 84 | 68 | 4590 | 2860 | 105 | | 738094 | 1.08 | 161 | 29 | 95 | 10500 | 690 | 190 | | 738116 | 1.20 | 305 | 109 | 53 | 7660 | 3160 | 34 | | 738141 | 1.35 | 67 | 27 | 92 | 12850 | 670 | 170 | | 738172 | 0.42 | 9 | 29 | 27 | 160 | 86 | 5 | | 738194 | 1.28 | 46 | 40 | 85 | 9200 | 1250 | 130 | | 738214 | 1.68 | 201 | 89 | 65 | 7490 | 3270 | 95 | | 738244 | 0.82 | 44 | 205 | 50 | 3110 | 7880 | 65 | | 738270 | 0.36 | 60 | 60 | 63 | 304 | 2430 | 150 | | 738294 | 1.25 | 97 | 59 | 65 | 700 | 900 | 250 | | 738319 | 0.92 | 122 | 29 | 70 | 3610 | 820 | 130 | | 738345 | 1.76 | 199 | 144 | 82 | 8650 | 1630 | 65 | | 738371 | 0.47 | 265 | 180 | 52 | 1510 | 6300 | 210 | | 738394 | 1.62 | 59 | 196 | 59 | 2310 | 6820 | 100 | | 738420 | 0.92 | 105 | 46 | 77 | 11400 | 1250 | 57 | Table 14.3(cont'd) – Verification of core duplicates | | | | | | 14.5(60 | verilica | | | |--------|-----------|-------------|----------|----------|----------|----------|----------|----------| | Sample | DDH | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | | 738446 | LR-10-115 | 1.05 | 224 | 142 | 69 | 6710 | 4040 | 98 | | 738470 | LR-10-116 | 1.18 | 1 | 33 | 18 | 830 | 350 | 0 | | 738496 | LR-10-118 | 1.16 | 680 | 231 | 66 | 6550 | 5790 | 95 | | 738514 | LR-10-119 | 0.90 | 76 | 118 | 73 | 960 | 4370 | 56 | | 738547 | LR-10-121 | 1.33 | 109 | 57 | 70 | 7390 | 680 | 50 | | 738569 | LR-10-121 | 0.76 | 71 | 152 | 52 | 2960 | 6040 | 51 | | 738597 | LR-10-122 | 1.16 | 3 | 37 | 21 | 710 | 361 | 2 | | 738622 | LR-10-124 | 1.35 | 416 | 44 | 68 | 8860 | 770 | 53 | | 738646 | LR-10-125 | 0.64 | 146 | 79 | 83 | 6590 | 2420 | 45 | | 738672 | LR-10-125 | 0.59 | 90 | 28 | 70 | 86 | 940 | 63 | | 738696 | LR-10-123 | 1.43 | 318 | 47 | 72 | 8330 | 1100 | 71 | | 738722 | LR-10-127 | 0.95 | 68 | 70 | 65 | 57 | 3050 | 75 | | 738746 | LR-10-128 | 0.97 | 319 | 133 | 83 | 65 | 3880 | 190 | | 738773 | LR-10-130 | 1.00 | 103 | 54 | 59 | 5050 | 2240 | 43 | | 738795 | LR-10-131 | 1.58 | 101 | 53 | 77 | 6840 | 1800 | 59 | | 738821 | LR-10-135 | 0.84 | 31 | 148 | 51 | 107 | 7170 | 55 | | 738848 | LR-10-133 | 0.39 | 106 | 89 | 75 | 7770 | 3890 | 93 | | 738869 | LR-10-134 | 1.36 | 79 | 92 | 84 | 9780 | 2990 | 140 | | 738892 | LR-10-136 | 1.38 | 232 | 53 | 63 | 8350 | 1530 | 49 | | 738920 | LR-10-138 | 1.05 | 100 | 22 | 63 | 8770 | 620 | 21 | | 738946 | LR-10-139 | 0.83 | 192 | 75 | 64 | 4330 | 2960 | 52 | | 747585 | LR-10-44 | 0.58 | 185 | 52 | 84 | 8460 | 910 | 140 | | 747625 | LR-10-48 | 0.43 | 110 | 138 | 63 | 5160 | 3330 | 92 | | 747640 | LR-10-48 | 0.47 | 54 | 143 | 65 | 4810 | 3440 | 240 | | 747672 | LR-10-50 | 0.65 | 184 | 99 | 68 | 7390 | 2050 | 270 | | 747693 | LR-10-50 | 0.44 | 140 | 85 | 64 | 6260 | 1560 | 120 | | 747719 | LR-10-51 | 1.20 | 5 | 129 | 22 | 500 | 800 | 5 | | 747749 | LR-10-51 | 0.65 | 109 | 62 | 78 | 8940 | 1140 | 200 | | 747772 | LR-10-53 | 0.37 | 110 | 47 | 87 | 9090 | 900 | 220 | | 747797 | LR-10-54 | 0.31 | 74 | 41 | 81 | 10400 | 1050 | 220 | | Duplicate | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |-----------|-------------|----------|----------|----------|----------|----------|----------| | 738445 | 1.19 | 138 | 135 | 68 | 6830 | 4000 | 130 | |
738469 | 1.20 | 7 | 28 | 19 | 890 | 348 | 4 | | 738495 | 1.06 | 178 | 203 | 67 | 5060 | 7330 | 140 | | 738513 | 0.81 | 100 | 86 | 79 | 580 | 3100 | 79 | | 738546 | 1.36 | 80 | 56 | 67 | 7490 | 840 | 50 | | 738568 | 0.66 | 114 | 134 | 54 | 3500 | 5400 | 49 | | 738596 | 1.15 | 1 | 38 | 20 | 720 | 254 | 1 | | 738621 | 1.28 | 356 | 45 | 64 | 8380 | 1020 | 65 | | 738645 | 0.82 | 147 | 86 | 80 | 4860 | 2790 | 47 | | 738671 | 0.64 | 95 | 35 | 76 | 95 | 790 | 72 | | 738695 | 1.35 | 215 | 39 | 72 | 7450 | 1020 | 79 | | 738721 | 1.19 | 470 | 67 | 59 | 2840 | 2650 | 99 | | 738745 | 1.21 | 79 | 124 | 77 | 43 | 4060 | 160 | | 738772 | 1.04 | 224 | 59 | 60 | 6430 | 2140 | 54 | | 738794 | 1.71 | 164 | 51 | 82 | 7740 | 1610 | 44 | | 738820 | 0.86 | 191 | 157 | 56 | 460 | 7540 | 120 | | 738847 | 0.42 | 86 | 94 | 80 | 6880 | 3300 | 62 | | 738868 | 1.37 | 102 | 75 | 83 | 11550 | 2140 | 120 | | 738891 | 1.21 | 115 | 42 | 75 | 9930 | 1350 | 89 | | 738919 | 0.60 | 90 | 41 | 66 | 9000 | 1440 | 23 | | 738945 | 0.78 | 204 | 76 | 65 | 5090 | 3210 | 34 | | 747584 | 0.78 | 108 | 48 | 95 | 9780 | 580 | 150 | | 747624 | 0.35 | 99 | 48 | 44 | 2500 | 950 | 96 | | 747639 | 0.49 | 70 | 161 | 68 | 5940 | 4100 | 120 | | 747671 | 0.85 | 214 | 74 | 80 | 8860 | 1290 | 270 | | 747692 | 0.32 | 49 | 73 | 58 | 1140 | 2190 | 130 | | 747718 | 1.15 | 5 | 127 | 23 | 480 | 720 | 8 | | 747748 | 0.61 | 132 | 51 | 77 | 7390 | 770 | 170 | | 747771 | 0.47 | 135 | 49 | 87 | 9710 | 1000 | 210 | | 747796 | 0.34 | 99 | 55 | 91 | 10800 | 1290 | 200 | Table 14.3(cont'd) - Verification of core duplicates | Sample | DDH | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |--------|----------|-------------|----------|----------|----------|----------|----------|----------| | 747822 | LR-10-56 | 1.00 | 183 | 63 | 80 | 1020 | 1420 | 61 | | 747870 | LR-10-57 | 0.84 | 139 | 39 | 77 | 7890 | 630 | 70 | | 747897 | LR-10-58 | 0.74 | 124 | 229 | 60 | 243 | 4520 | 170 | | 747920 | LR-10-59 | 1.21 | 132 | 53 | 67 | 7570 | 1360 | 52 | | 747947 | LR-10-62 | 0.51 | 79 | 58 | 68 | 172 | 2610 | 82 | | 747972 | LR-10-62 | 1.19 | 3 | 21 | 20 | 442 | 110 | 0 | | 747997 | LR-10-65 | 1.15 | 186 | 153 | 67 | 5890 | 2870 | 150 | | 883622 | LR-10-77 | 0.49 | 136 | 29 | 66 | 82 | 500 | 170 | | 883647 | LR-10-78 | 0.93 | 152 | 78 | 71 | 7260 | 1980 | 59 | | 883672 | LR-10-79 | 1.70 | 3 | 149 | 19 | 620 | 500 | 2 | | 883698 | LR-10-80 | 0.69 | 119 | 125 | 60 | 7040 | 4830 | 45 | | 883723 | LR-10-81 | 0.83 | 73 | 156 | 64 | 3170 | 6110 | 290 | | 883747 | LR-10-83 | 1.60 | 163 | 72 | 73 | 7670 | 1500 | 105 | | 883772 | LR-10-83 | 0.35 | 26 | 23 | 71 | 255 | 343 | 105 | | 883822 | LR-10-84 | 1.03 | 183 | 80 | 101 | 1850 | 2020 | 120 | | 883848 | LR-10-85 | 0.50 | 131 | 205 | 47 | 2570 | 4930 | 83 | | 883874 | LR-10-86 | 0.64 | 200 | 68 | 62 | 8260 | 1520 | 94 | | 883897 | LR-10-87 | 0.98 | 123 | 58 | 124 | 69 | 1450 | 290 | | 916123 | LR-10-12 | 1.68 | 69 | 66 | 97 | 12900 | 1480 | 180 | | 916159 | LR-10-14 | 1.80 | 115 | 159 | 72 | 5060 | 2915 | 198 | | 916184 | LR-10-15 | 0.92 | 118 | 111 | 85 | 8330 | 1680 | 120 | | 916211 | LR-10-16 | 1.94 | 115 | 72 | 82 | 9080 | 1000 | 160 | | 916226 | LR-10-16 | 1.31 | 61 | 75 | 111 | 13400 | 1380 | 310 | | 916241 | LR-10-22 | 1.53 | 0 | 32 | 16 | 470 | 89 | 0 | | 916256 | LR-10-22 | 1.35 | 172 | 128 | 57 | 73 | 1580 | 110 | | 916270 | LR-10-27 | 2.05 | 126 | 54 | 72 | 9080 | 1190 | 120 | | 916299 | LR-10-19 | 0.72 | 122 | 58 | 99 | 10200 | 910 | 190 | | 916326 | LR-10-20 | 1.78 | 71 | 61 | 88 | 11500 | 830 | 250 | | | LR-10-23 | 0.98 | 89 | 69 | 90 | 9990 | 2180 | 89 | | 916386 | LR-10-24 | 1.79 | 82 | 53 | 85 | 10400 | 1413 | 114 | | Duplicate | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |-----------|-------------|----------|----------|----------|----------|----------|----------| | 747821 | 0.89 | 405 | 74 | 75 | 1800 | 1160 | 50 | | 747869 | 0.87 | 167 | 49 | 82 | 6390 | 840 | 120 | | 747896 | 0.64 | 121 | 183 | 63 | 191 | 2990 | 200 | | 747919 | 1.18 | 91 | 43 | 69 | 7810 | 1120 | 58 | | 747946 | 0.47 | 147 | 67 | 69 | 200 | 2200 | 93 | | 747971 | 1.32 | 3 | 21 | 19 | 446 | 110 | 1 | | 747996 | 1.07 | 177 | 100 | 80 | 7000 | 1610 | 170 | | 883621 | 0.49 | 162 | 39 | 61 | 83 | 880 | 160 | | 883646 | 0.77 | 180 | 70 | 77 | 8010 | 1450 | 63 | | 883671 | 1.57 | 0 | 16 | 2 | 80 | 53 | 0 | | 883697 | 0.70 | 234 | 125 | 60 | 6710 | 4430 | 76 | | 883722 | 0.76 | 178 | 195 | 69 | 3070 | 7160 | 320 | | 883746 | 1.70 | 206 | 80 | 70 | 6120 | 1590 | 105 | | 883771 | 0.37 | 26 | 32 | 81 | 273 | 460 | 130 | | 883821 | 1.10 | 82 | 102 | 93 | 890 | 2820 | 92 | | 883847 | 0.57 | 96 | 169 | 49 | 4470 | 5170 | 82 | | 883873 | 0.67 | 156 | 51 | 74 | 10750 | 960 | 95 | | 883896 | 0.90 | 94 | 38 | 108 | 55 | 960 | 230 | | 916122 | 1.61 | 42 | 61 | 91 | 14000 | 1460 | 180 | | 916158 | 1.47 | 124 | 130 | 71 | 5500 | 2315 | 210 | | 916183 | 1.28 | 123 | 102 | 102 | 10800 | 1020 | 110 | | 916210 | 1.49 | 191 | 81 | 79 | 9210 | 880 | 140 | | 916225 | 1.21 | 56 | 91 | 110 | 13500 | 1680 | 240 | | 916242 | 1.61 | 0 | 29 | 17 | 480 | 86 | 0 | | 916255 | 1.52 | 158 | 119 | 52 | 71 | 1460 | 390 | | 916269 | 1.55 | 73 | 71 | 69 | 7820 | 1730 | 110 | | 916298 | 0.99 | 83 | 62 | 81 | 9280 | 1260 | 160 | | 916325 | 1.82 | 47 | 62 | 90 | 11700 | 920 | 150 | | 916348 | 1.26 | 79 | 52 | 96 | 10800 | 1510 | 95 | | 916383 | 1.53 | 72 | 76 | 81 | 9580 | 1850 | 136 | Table 14.3(cont'd) – Verification of core duplicates | | | | I able I | | | | | V CI IIIC | |---------|----------|-------------|----------|----------|----------|----------|----------|-----------| | Sample | DDH | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | | 916398 | LR-10-24 | 1.69 | 192 | 97 | 95 | 10800 | 1278 | 336 | | 916416 | LR-10-25 | 1.10 | 59 | 84 | 65 | 6850 | 2475 | 242 | | 916449 | LR-10-26 | 1.07 | 127 | 63 | 80 | 8440 | 1330 | 110 | | 916476 | LR-10-28 | 1.24 | 171 | 105 | 54 | 3460 | 2630 | 210 | | 916495 | LR-10-29 | 1.67 | 79 | 60 | 98 | 13200 | 680 | 360 | | 916525 | LR-10-30 | 0.78 | 112 | 127 | 98 | 3540 | 2840 | 90 | | 916546 | LR-10-31 | 1.18 | 88 | 88 | 87 | 7230 | 2480 | 150 | | 916574 | LR-10-34 | 1.77 | 82 | 202 | 87 | 2720 | 3850 | 380 | | 916595 | LR-10-35 | 1.68 | 95 | 132 | 97 | 12700 | 1600 | 150 | | 916631 | LR-10-36 | 1.37 | 29 | 113 | 110 | 11500 | 2430 | 140 | | 916649 | LR-10-37 | 1.38 | 73 | 73 | 66 | 3460 | 1850 | 260 | | 916677 | LR-10-38 | 1.10 | 126 | 102 | 97 | 9080 | 2550 | 180 | | 916686 | LR-10-39 | 1.36 | 84 | 40 | 106 | 11800 | 1080 | 200 | | 916725 | LR-10-40 | 1.68 | 109 | 140 | 66 | 7120 | 3720 | 130 | | 916748 | LR-10-41 | 1.67 | 143 | 123 | 79 | 8480 | 3320 | 210 | | 916775 | LR-10-42 | 1.72 | 116 | 93 | 69 | 5520 | 1380 | 140 | | 916796 | LR-09-06 | 1.21 | 21 | 63 | 98 | 18 | 1150 | 910 | | 946568 | LR-10-67 | 1.26 | 45 | 80 | 82 | 10200 | 1720 | 150 | | 946593 | LR-10-68 | 0.61 | 20 | 18 | 78 | 26 | 389 | 190 | | 946622 | LR-10-68 | 0.85 | 71 | 89 | 84 | 6820 | 1020 | 96 | | 946648 | LR-10-69 | 0.33 | 43 | 560 | 39 | 1730 | 3460 | 18 | | 946672 | LR-10-69 | 0.31 | 12 | 431 | 102 | 820 | 2200 | 90 | | 946697 | LR-10-74 | 1.12 | 2 | 53 | 26 | 590 | 330 | 11 | | 946724 | LR-10-75 | 1.14 | 105 | 71 | 76 | 2520 | 2140 | 160 | | 946749 | LR-10-77 | 0.32 | 11 | 183 | 43 | 670 | 510 | 65 | | 962821 | LR-10-90 | 1.07 | 105 | 68 | 87 | 7590 | 1810 | 100 | | 962845 | LR-10-92 | 0.50 | 17 | 73 | 117 | 14250 | 2240 | 340 | | 962870 | LR-10-94 | 1.33 | 127 | 41 | 90 | 8840 | 850 | 84 | | 1119421 | LR-10-87 | 0.71 | 131 | 250 | 73 | 3750 | 7530 | 180 | | 1119465 | LR-10-88 | 1.60 | 114 | 102 | 70 | 7910 | 3680 | 94 | | 1119490 | LR-10-89 | 1.26 | 166 | 91 | 75 | 7820 | 3180 | 120 | | Duplicate | Weight (kg) | Be (ppm) | Cs (ppm) | Ga (ppm) | Li (ppm) | Rb (ppm) | Ta (ppm) | |-----------|-------------|----------|----------|----------|----------|----------|----------| | 916397 | 1.78 | 93 | 111 | 99 | 11100 | 1848 | 323 | | 916415 | 1.68 | 73 | 74 | 78 | 8570 | 1578 | 257 | | 916448 | 1.11 | 134 | 60 | 77 | 8230 | 1190 | 110 | | 916475 | 1.60 | 107 | 92 | 52 | 1370 | 3130 | 140 | | 916494 | 1.38 | 77 | 53 | 103 | 12600 | 700 | 400 | | 916524 | 0.76 | 82 | 145 | 93 | 2840 | 3480 | 160 | | 916545 | 1.46 | 246 | 82 | 106 | 9380 | 1700 | 160 | | 916570 | 1.59 | 109 | 142 | 82 | 4270 | 3220 | 340 | | 916594 | 1.79 | 83 | 161 | 79 | 11000 | 2150 | 120 | | 916630 | 1.45 | 34 | 91 | 112 | 11300 | 1720 | 220 | | 916648 | 1.41 | 147 | 81 | 60 | 3310 | 1630 | 200 | | 916676 | 1.23 | 189 | 102 | 100 | 9860 | 2340 | 170 | | 916685 | 1.37 | 48 | 48 | 94 | 11200 | 1530 | 220 | | 916724 | 2.03 | 91 | 129 | 66 | 7390 | 3600 | 110 | | 916747 | 1.84 | 127 | 122 | 84 | 8210 | 3560 | 200 | | 916774 | 1.40 | 119 | 101 | 75 | 5700 | 1250 | 140 | | 916795 | 1.13 | 12 | 53 | 94 | 14 | 1050 | 340 | | 946567 | 1.51 | 436 | 140 | 76 | 9260 | 1880 | 140 | | 946592 | 0.55 | 26 | 31 | 85 | 59 | 530 | 170 | | 946621 | 0.79 | 53 | 87 | 76 | 6410 | 1430 | 87 | | 946647 | 0.34 | 46 | 570 | 42 | 1900 | 3750 | 18 | | 946671 | 0.35 | 8 | 540 | 94 | 910 | 1890 | 83 | | 946696 | 1.13 | 2 | 60 | 25 | 590 | 331 | 6 | | 946723 | 1.18 | 83 | 69 | 76 | 3290 | 2140 | 150 | | 946748 | 0.32 | 13 | 190 | 54 | 640 | 510 | 82 | | 962820 | 0.80 | 76 | 93 | 86 | 6920 | 2710 | 110 | | 962844 | 0.51 | 20 | 61 | 90 | 10450 | 1730 | 290 | | 962869 | 1.29 | 95 | 42 | 92 | 8120 | 940 | 79 | | 1119420 | 0.89 | 136 | 241 | 69 | 3910 | 7910 | 220 | | 1119464 | 1.63 | 112 | 129 | 68 | 8270 | 4410 | 76 | | 1119489 | 1.10 | 59 | 108 | 73 | 7160 | 4410 | 103 | In addition, a selection of approximately 10% of the samples sent to ALS Chemex Laboratories from the Rose deposit was sent to a third Laboratory in November 2010 in order to confirm values. Acme Analytical Laboratories Ltd. was chosen by First Gold and results were obtained on November 26th 2010 via electronic transmission. Third laboratory pulp reassays returned values similar to original assays (Fig.
14.7). One could argue about the Ta results that show an R-squared value of 0.58, but note that the R-square value is brought to 0.9618 if one sample (lower-right in the chart) is retrieved from the database. Therefore, the authors believe that both databases correlate well. Figure 14.7 – Reassays in a third Laboratory (ACME). "x" = original assay and "y" = reassay. #### 14.2.5 InnovExplo's grab sampling During the site visit, the author collected twelve (12) grab samples for the purpose of conducting an independent analysis. Samples were collected, bagged and delivered to ALS Chemex Laboratory by the author. Table 14.4 presents the results for those samples. The goal of this verification was to confirm the presence of the reported Li, Be, Ta, Cs, Rb and Ga mineralization. Mineralization-level values were successfully obtained for all of the visited showings, except for Hydro: samples from this showing failed to yield significant results for Li, with only Ta returning significant levels (>100 ppm). However, the author is of the opinion that all showings presented in this report truly contain Li and rare-element mineralization, and grab samples are unlikely to represent average grades. Table 14.4 – Samples collected by the author and independently analyzed as part of data verification for the Pivert-Rose property | Sample | Showing | UTM83 | Zone 18 | Li | Be | Та | Cs | Rb | Ga | |--------|---------|---------|----------|----------|-----|------|-----|------|-----| | | 3 | Easting | Northing | | | | | | | | | | Easung | Northing | ppm | ppm | ppm | ppm | ppm | ppm | | 58001 | Pivert | 422649 | 5766795 | 5,570 | 38 | 45 | 44 | 1420 | 64 | | 58002 | Hydro | 420487 | 5763947 | 136 | 214 | >100 | 23 | 171 | 61 | | 58003 | Hydro | 420600 | 5763893 | 28 | 204 | >100 | 22 | 510 | 60 | | 58004 | Rose | 419628 | 5763381 | 7,950 | 128 | >100 | 155 | 3650 | 68 | | 58005 | Rose | 419601 | 5763387 | > 10 000 | 171 | >100 | 122 | 3260 | 84 | | 58006 | Rose | 419628 | 5763468 | 55 | 16 | >100 | 37 | 1140 | 69 | | 58007 | Rose | 419597 | 5763496 | 111 | 123 | 36 | 57 | 1470 | 34 | | 58008 | Rose | 419692 | 5763373 | 7,100 | 96 | >100 | 121 | 3660 | 95 | | 58009 | Rose | 420044 | 5763217 | > 10 000 | 133 | 100 | 47 | 1260 | 78 | | 58010 | Rose | 420047 | 5763174 | 4,320 | 127 | 45 | 104 | 3140 | 57 | | 58011 | JR | 421764 | 5764520 | 9,870 | 172 | >100 | 54 | 1360 | 75 | | 58012 | JR | 421777 | 5764505 | 7,150 | 305 | 57 | 121 | 4170 | 68 | # 15.0 ADJACENT PROPERTIES (Item 17) The Pivert-Rose property is almost completely surrounded by either active or pending titles owned by several different companies or prospectors (Fig. 15.1). Only the area adjacent to the northwest part of Block D and the southeast part of Block E are available for staking. The only similar showing recognized in the immediate vicinity of the Pivert-Rose property is Pontax, belonging to Dios-Sirios and situated between blocks D and E (Figs. 15.1 and 15.2). The Pontax showing contains lithium and rare-element mineralization within pegmatite dykes as reported on the owner's website. Two other lithium deposits (Whabouchi and James Bay) have been found in the general area around the Pivert-Rose property. Whabouchi (owned by Nemaska Exploration Inc) and James Bay (owned by Lithium One Inc). Several other types of showings (copper, gold, silver, lead, zinc) are present further north (several kilometres) from the Pivert-Rose property (Fig. 15.2). Figure 15.1 – Lithium occurrences in the vicinity of the Pivert-Rose property Figure 15.2 – Properties and mineral occurrences in the vicinity of the Pivert-Rose property according to Gestim and Sigeom # 16.0 MINERAL PROCESSING AND METALLURGICAL TESTING (Item 18) No mineral processing or metallurgical testing has been conducted on the Pivert-Rose property. # 17.0 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES (Item 19) #### 17.1 Historical and previous Mineral Resource Estimate This report represents the first time a Regulation 43-101-compliant mineral resource estimate has been performed for the Pivert-Rose property. There are no historical resource estimates for the property. #### 17.2 Methodology The Mineral Resource Estimate detailed in this report was made using 3-D modelling and block model interpolation for a 1,100-metre strike length corridor of the Rose deposit from section 150 to section 1300, and down to a vertical depth of 210 metres below surface. InnovExplo developed an interpretation for the Rose deposit using transverse sections spaced 50 metres apart. The spacing between drill holes and the geological continuity are, for most of the deposit, sufficient to classify most of the resource as Indicated, but some of the resource can only be classified as Inferred. An approach based on multiple zones was used for the current Resource Estimate. InnovExplo defined five zones (Peg-1 to Peg-5) based on geological and lithium grade continuity. #### 17.3 Drill hole database First-Gold provided InnovExplo with a Gems diamond drill hole database for the Pivert-Rose property. The database contained 142 surface diamond drill holes with coded lithologies from the drill core logs. Three holes (LP-09-01 to LP-09-03) are located on the Pivert showing and were not considered for the resource estimation. All 139 available holes (LR-09-01 to LR-10-139) from the Rose deposit were considered. At the time of writing this report, the Pivert-Rose property was still being drilled. To the best knowledge of the authors, four holes (LR-10-140 to LR-10-143) were drilled after the resource estimation was finished but before the report's date of publication (see First Gold's press release dated January 11, 2010). Those holes are located in the northeast part of the Rose deposit and they intersect mineralized zones over consistent thicknesses. # 17.4 Domain interpretation It was necessary to construct five (5) different domain wireframe solid models (Peg-1 to Peg-5) to properly control the grade interpolation within the corresponding mineralized zones. The interpretation of the mineralized envelops was based solely on lithium grades and did not take into account other elements (Ta, Rb, Cs, Ga, Be). However, these other elements were interpolated inside the lithium-mineralized envelopes. On several occasions, the pegmatitic dykes yielded significant grades for one or more of the other elements but had lithium grades below cut-off. These dyke extensions were excluded from the resource estimation. Figure 17.1 presents an isometric view of the mineralized-zone model developed along a 1.1-kilometre strike length. The wireframe solids of the mineralized-zone model were created in Gems based on an interpretation projected onto sections spaced 50 metres apart across the 1.1-kilometre strike length, and then using tie lines between sections to complete the wireframes for each solid. Figure 17.1 – North-facing isometric view of the mineralized zones in the Rose deposit. #### 17.5 Assay data, verification and treatment The authors were granted access to the official results from the ALS Chemex Laboratory for all holes used in the resource estimate (holes LR-09-01 to LR-10-139). The authors downloaded every certificate directly from the laboratory and built the Gems database using the information contained therein. As discussed in Drilling (*item 13*), the authors recalculated the results using their independently compiled database according to the following rules: - For Li, two methods were found in the database (ME-MS61 and ME-OG63). ME-OG63 is a method capable of returning results for higher grades and was only used when ME-MS61 yielded >10,000 ppm. Therefore, values from ME-OG63 were used when available. - For Be, two methods were found in the database (ME-MS61 and ME-ICP61a). ME-ICP61a is a method capable of returning results for higher grades and was only used when ME-MS61 yielded >500 ppm and. Therefore, values from ME-ICP61a were used when available. - For Rb, two methods were found in the database (ME-MS61 and ME-MS81). When both methods were available, an average of the two methods was applied. In the case where a sample yielded a result of >10,000 ppm Rb, a value of 10,000 was applied prior to proceeding with the average. - For Ta, three methods were found in the database (ME-MS61, ME-MS81 and ME-XRF05). When more than one method was available, an average was applied. In the case where Ta values were >100 ppm using method ME-MS61, the average of ME-MS81 and ME-XRF05 was used. In each instance where this occurred, the results from ME-MS81 or ME-XRF05 or both were available. In the case where the Ta value using method ME-XRF05 was >10,000 ppm, a value of 10,000 was applied. - For Cs, three methods were found in the database (ME-MS61, ME-MS81 and ME-XRF05). When more than one method was available, an average was applied. In the case where Cs values were >500 ppm using method ME-MS61, the average of ME-MS81 and ME-XRF05 was used. In each instance where this occurred, results from ME-MS81 or ME-XRF05 or both were available. - For Ga, two methods were found in the database (ME-MS61 and ME-MS81). When both methods were available, an average of the two methods was applied. The results (in ppm) were then rounded to the closest integer and included in the Gems database. The reader is invited to consult the Data Verification section (Item 16) for a complete description of the verifications and validations performed for this project. #### 17.6 Grade capping and compositing Based on the normal histograms of grades in the mineralized zones (Figs. 17.2 to 17.7), a capping value was attributed to each of the six elements considered in this resource estimate. Six samples were cut to 15,000 ppm Li, 8 samples were cut to 650 ppm Ta, 26 samples were cut to 850 ppm Cs, 17 samples were cut to 600 ppm Be, and 6 samples were cut to 150 ppm Ga. The histogram of Rb grades do not display any significant breaks that would suggest a capping grade; however, values over
10,000 ppm show ">10,000 ppm" in the laboratory's certificates and were not reassayed. Therefore, 10,000 ppm is herein considered as the capping grade for Rb. Note that Ga clearly shows two distinct families (Fig. 17.6). No further investigation were conducted at this stage since Ga represents a subproduct, but understanding the distribution of those two families could help improve the understanding of the deposit. Figure 17.2 - Normal histogram of Li grade Figure 17.3 - Normal histogram of Ta grade Figure 17.4 – Normal histogram of Cs grade Figure 17.5 - Normal histogram of Be grade Figure 17.6 - Normal histogram of Ga grade Figure 17.7 – Normal histogram of Rb grade To minimize any bias introduced by the variable sample lengths, assays were composited to equal lengths of 1 metre each within all intervals that define the mineralized zones. All composites generated within an assayed interval were considered, and no grades were assigned to missing sample intervals. #### 17.7 Variography Three-dimensional directional-specific variography for every considered element was completed using the 1-metre equal-length assay composites for populations confined to the mineralized-zone solids. Two parallel variography studies were performed with the aim of detecting whether the distribution of the satellite zones (Peg-2 to Peg-5) was coherent with the main zone (Peg-1). These studies led to the conclusion that all five zones show a similar distribution of the considered elements. The best-fit major axis of the variograms for the Peg-1 zone are shown below as figures 17.8 to 17.13. Figure 17.8 – Li 3-D variogram within the Peg-1 Zone (major axis). Figure 17.9 – Rb 3-D variogram within the Peg-1 Zone (major axis). Figure 17.10 – Ta 3-D variogram within the Peg-1 Zone (major axis). Figure 17.11 – Cs 3-D variogram within the Peg-1 Zone (major axis). Figure 17.12 - Be 3-D variogram within the Peg-1 Zone (major axis). Figure 17.13 – Ga 3-D variogram within the Peg-1 Zone (major axis). The results of the 3-D variographic investigations correlate with geological features of the deposit. The 3-D directional-specific investigations yielded the best-fit model along an orientation that roughly corresponds to the strike and dip of the mineralized zones. Some changes were introduced to the best-fit model in accordance with the geological model. The 3-D variography combined with the modified best-fit model produces seven specific ellipses: 1) Inferred Ellipse for Li: 55m x 40m x 35m 2) Indicated Ellipse for Li: 110m x 80m x 70m 3) Ellipse for Rb: 90m x 50m x 80m 4) Ellipse for Ta: 200m x 120m x 60m 5) Ellipse for Cs: 150m x 120m x 70m 6) Ellipse for Be: 80m x 80m x 80m 7) Ellipse for Ga: 120m x 90m x 70m #### 17.8 Metallurgical treatment No metallurgical testing has been done on rocks from the Rose deposit. #### 17.9 Density A density value was determined using drill hole samples for the purposes of the current resource estimate. A density of 2.72 g/cm³ was derived using 106 samples from the various mineralized zones, with measured values ranging from 2.59 g/cm³ to 2.86 g/cm³. Densities were measured by ALS Chemex Laboratories. This value was assigned to all mineralized zones for the current Resource Estimate. #### 17.10 Block model geometry A block model was established to include the entire 1.1-kilometre segment of known mineralization to a depth of 210 metres below surface. The limits of the block model are as follows: - 440 columns x 5 m each - 380 rows x 5 m each - 70 levels x 5 m each The block model is oriented parallel to mineralization along an azimuth of N296. The individual block cells have dimensions of 5 metres long (X-axis) by 5 metres wide (Y) by 5 metres vertical (Z). #### 17.11 Mineralized-envelope block model All blocks greater than 0.001% within the mineralized zones were assigned a rock code corresponding to the mineralized-zone solids. A percent block model was then generated reflecting the proportion of each block inside these solids. The percent block model was used in the resource estimation process. A total of 96,206 blocks in the mineralized-envelope block model were coded using mineralized zone rock codes. All remaining blocks were assigned code "0" for waste rock. The calculation was then performed on each zone, with the respective calculated ellipses constrained only by the respective mineralized zone. #### 17.12 Grade block model A grade model was interpolated using the 1-meter composites calculated from assay to produce the best possible grade estimate for the defined resources in the various mineralized zones. Interpolation profiles were established for grade estimation in the grade model. The inverse distance squared method was performed. A point-area workspace providing the X, Y, Z and assays data points was used for block interpolation in the grade model. The 1-metre assay composites were specified for all blocks inside the mineralized-zones solids. The composite points in each of the point-area files were assigned rock and block codes corresponding to the respective mineralized zone. The interpolation profiles specify a single target and sample rock code (the mineralized-zone solid), thus establishing hard boundaries based on the zone and preventing an estimation of block grades using sample points outside this zone. The respective search/interpolation ellipse orientations and ranges defined in the interpolation profiles used for grade estimation correspond to those developed in the section on Variography (17.7). Other specifications for controlling grade estimation are as follows: - inverse distance squared interpolation method for data points; - minimum of two (2) and maximum of twelve (12) sample points in the search ellipse for interpolation; - · capping on assays before compositing. #### 17.13 Resource category block model Resources in the Inferred category were identified by the interpolation process based on search ellipse criteria and specific interpolation parameters. Resources in the Indicated category were then identified by the interpolation process based on search ellipse criteria and specific interpolation parameters. Indicated Resources were then retrieved from the Inferred Resources. There is no Measured category for the Rose deposit resources at this stage of exploration. Only blocks having an assigned rock code were interpolated for grade and resource categories, for a total of 88,519 interpolated blocks. #### 17.14 Determination of cut-off grade A minimum cut-off grade of 3,483.5ppm Li (representing 0.75% Li₂O) was used for the Mineral Resource Estimate. Resource estimates are also presented at different cut-off grades, from 0.25% to more than 2.00% Li₂O (Table 17.1). A cut-off of 0.75% Li₂O was set based on the current resource estimate and market conditions. This cut-off must be reevaluated in light of the present market conditions: lithium price, exchange rate and mining cost as well as possible recovery of other elements. #### 17.15 Mineral Resource classification, category and definitions The resource classification definitions used for this report are those published by the Canadian Institute of Mining, Metallurgy and Petroleum in their document "CIM Standards on Mineral Resources and Reserves: Definitions and Guidelines". Measured Mineral Resource: that part of a Mineral Resource for which quantity, grade or quality, densities, shape, physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity. Indicated Mineral Resource: that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed. Inferred Mineral Resource: that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling, and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. #### 17.16 Resource estimation Based on the density of the processed data, the search ellipse criteria, and specific interpolation parameters, the authors are of the opinion that the current Mineral Resource Estimate can only be classified as Inferred and Indicated resources. The Estimate follows CIM standards and guidelines for reporting mineral resources and reserves. A minimum mining width of 2 metres (true width) and a cut-off grade of 0.75% Li₂O were considered for the Mineral Resource Estimate. InnovExplo estimates that the Rose deposit has Indicated Resources of 11,436,000 tonnes grading 1.34% Li₂O, 135ppm Ta, 2,668ppm Rb, 106ppm Cs, 136ppm Be, 71ppm Ga, and Inferred Resources of 2,170,000 tonnes grading 1.27% Li₂O, 113ppm Ta, 1,529ppm Rb, 100ppm Cs, 112ppm Be, 70ppm Ga, at a cut-off grade of 0.75% Li₂O for both (Table 17.2). Table 17.1 presents the sensitivity of selected parameters (metric tons and grades) to various cut-off grades in the
Indicated and Inferred resources. Table 17.1 – Rose Resource sensitivity with variable cut-off for all zones combined | | Indicated Resources | | | | | | | | | | | | | |----------|---------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|--| | Cut-off | Tonnes | Li | Li2O | Ta | Rb | Cs | Ве | Ga | | | | | | | (% Li20) | (x 1,000) | (ppm) | (%) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | | | | | | | >0.25% | 12,783 | 5,881 | 1.27% | 134 | 2,610 | 107 | 133 | 70 | | | | | | | >0.50% | 12,426 | 5,992 | 1.29% | 135 | 2,631 | 107 | 134 | 71 | | | | | | | >0.75% | 11,453 | 6,251 | 1.34% | 135 | 2,668 | 106 | 136 | 71 | | | | | | | >0.80% | 11,133 | 6,327 | 1.36% | 136 | 2,681 | 106 | 136 | 71 | | | | | | | >1.00% | 10,023 | 6,561 | 1.41% | 137 | 2,690 | 104 | 137 | 72 | | | | | | | >1.25% | 7,264 | 7,041 | 1.52% | 136 | 2,660 | 99 | 136 | 73 | | | | | | | >1.50% | 3,302 | 7,795 | 1.68% | 133 | 2,567 | 90 | 138 | 74 | | | | | | | >1.75% | 894 | 8,802 | 1.90% | 130 | 2,281 | 77 | 130 | 76 | | | | | | | >2.00% | 155 | 9,835 | 2.12% | 131 | 1,924 | 64 | 139 | 78 | | | | | | | | Inferred Resources | | | | | | | | | | | | |----------|--------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--| | Cut-off | Tonnes | Li | Li2O | Ta | Rb | Cs | Ве | Ga | | | | | | (% Li20) | (x 1,000) | (ppm) | (%) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | | | | | | >0.25% | 2,801 | 5,070 | 1.09% | 111 | 1,453 | 98 | 107 | 69 | | | | | | >0.50% | 2,411 | 5,589 | 1.20% | 115 | 1,484 | 100 | 109 | 70 | | | | | | >0.75% | 2,170 | 5,878 | 1.27% | 113 | 1,529 | 100 | 112 | 70 | | | | | | >0.80% | 2,049 | 6,013 | 1.29% | 114 | 1,567 | 101 | 112 | 70 | | | | | | >1.00% | 1,614 | 6,511 | 1.40% | 117 | 1,498 | 97 | 111 | 72 | | | | | | >1.25% | 1,232 | 6,890 | 1.48% | 117 | 1,498 | 96 | 109 | 73 | | | | | | >1.50% | 587 | 7,282 | 1.57% | 115 | 1,451 | 89 | 100 | 72 | | | | | | >1.75% | 3 | 8,634 | 1.86% | 125 | 302 | 111 | 24 | 80 | | | | | | >2.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | | | | | | | Tonnes | Li2O | Ta | Rb | Cs | Be | Ga | |-----------------|-----------|------|-------|-------|-------|-------|-------| | | (x 1,000) | (%) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | | Indicated | | | | | | | | | Peg-1 | 10,089 | 1.37 | 135 | 2,690 | 103 | 137 | 71 | | Peg-2 | 575 | 1.14 | 164 | 2,702 | 137 | 125 | 81 | | Peg-3 | 109 | 1.19 | 183 | 3,524 | 167 | 113 | 68 | | Peg-4 | 135 | 1.02 | 126 | 2,953 | 129 | 126 | 68 | | Peg-5 | 528 | 1.15 | 105 | 1,963 | 101 | 146 | 72 | | Total Indicated | 11,436 | 1.34 | 135 | 2,668 | 106 | 136 | 71 | | | | | | | | | | | Inferred | | | | | | | | | Peg-1 | 1,662 | 1.31 | 115 | 1,528 | 97 | 116 | 68 | | Peg-2 | 186 | 1.20 | 145 | 981 | 149 | 96 | 82 | | Peg-3 | _ | - | - | - | - | - | - | | Peg-4 | 154 | 0.95 | 85 | 2,653 | 116 | 95 | 70 | | Peg-5 | 168 | 1.21 | 85 | 1,113 | 67 | 103 | 74 | | Total Inferred | 2,170 | 1.27 | 113 | 1,529 | 100 | 112 | 70 | - Qualified Persons for the Mineral Resource Estimate, as defined by National Regulation 43-101, were Pierre-Luc Richard, B.Sc., P.Geo. and Carl Pelletier, B.Sc., P.Geo. (InnovExplo Inc), and the effective date of the estimate is December 6, 2010. National Regulation 43-101 and CIM definitions were followed. - 2.) Mineral Resources are not Mineral Reserves having no demonstrable economic viability. - 3.) Results are presented undiluted and in situ, and some resource blocks may be locked in pillars. The estimate includes six (5) zones (Peg-1, Peg-2, Peg-3, Peg-4 and Peg-5) and covers the Rose drilled area. Totals may not sum correctly due to rounding. - 4.) The resource modelling used data from surface NQ drill core samples collected by First Gold Exploration in 2009 (10 DDH) and 2010 (129 DDH) totalling 3,083 assay intervals from 16,322 metres of drilling. A fixed density of 2.72 g/cm³ was used based on the average density measured in mineralized lithologies. A minimum width of 2.0m was applied, using the grade of the adjacent material when assayed or a value of zero when not assayed. Based on pertinent statistics, a capping of 15,000 was fixed for lithium, 650 for tantalum, 10,000 for rubidium, 850 for cesium, 600 for beryllium, and 150 for gallium. Raw assays were composited (after being capped) using 1.00-m drill hole intervals. - 5.) The Resources were compiled using a cut-off grade of 0.75% Li₂O based on the current resource estimate and market conditions. This cut-off must be re-evaluated in light of the prevailing market conditions: lithium price, exchange rate and mining cost, in addition to the possible recovery of other elements. - 6.) No Measured Resources were estimated. The Indicated and Inferred Resources were evaluated from drill holes results using a block model approach (inverse distance squared interpolation) with 5m blocks in GEMS software (version 6.2.4). The interpolation was constrained within six (5) individual 3D solids (Peg-1, Peg-2, Peg-3, Peg-4 and Peg-5). - 7.) Calculations used metric units (metres, tonnes and ppm). Results were rounded to reflect their estimative nature. Tonnes are rounded to 1,000. Grades reported as percentages were rounded to two decimals, whereas grades reported in parts per million (ppm) were rounded to the closest integer. # 18.0 OTHER RELEVANT DATA AND INFORMATION (Item 20) There is no other relevant information to be included in this report. ## 19.0 INTERPRETATION AND CONCLUSIONS (Item 21) The Rose deposit is at an advanced stage of exploration and hosts significant lithium and rareelement mineralization. A total of 139 drill holes were considered for the resource estimate presented in this report, but 143 holes were drilled on the Rose deposit and 3 on the Pivert showing. Based on the density of the processed data, the search ellipse criteria, and specific interpolation parameters, the authors are of the opinion that the current Mineral Resource Estimate can only be classified as Inferred and Indicated resources. The Estimate follows CIM standards and guidelines for reporting mineral resources and reserves. A minimum mining width of 2 metres (true width) and a cut-off grade of 0.75% Li₂O were considered for the Mineral Resource Estimate. InnovExplo estimates that the Rose deposit has Indicated Resources of 11,436,000 tonnes grading 1.34% Li₂O, 135ppm Ta, 2,668ppm Rb, 106ppm Cs, 136ppm Be, 71ppm Ga, and Inferred Resources of 2,170,000 tonnes grading 1.27% Li₂O, 113ppm Ta, 1,529ppm Rb, 100ppm Cs, 112ppm Be, 70ppm Ga, at a cut-off grade of 0.75% Li₂O for both. Out of 143 drill holes at Rose, 140 returned significant mineralized values for Li, Ta, Rb, Cs, Ga or Be, and in most cases, for more than one of these elements. Mineralization is hosted within outcropping pegmatite dykes subparallel to the surface. The mineralized pegmatitic dykes are oriented N296 and show a shallow dip to the northeast averaging 15 degrees (locally from 5 to 20 degrees). The main zone (Peg-1) was identified over a strike of 1,100 metres and remains open along strike at depth. Based on lithium grades, Peg-1 is, so far, only limited by topography. It is open along strike to the southeast and to the northwest as well as at depth. Peg-2 is open at depth and along strike to the northwest while the southeast strike needs more drilling to explore its potential. Peg-3 is constrained by topography and by negative drill holes in all other directions. Peg-4 is open along strike to the southeast and at depth. Peg-5 is open along strike to the northwest and at depth. The block model indicates that the entire reported resource extends to a depth of 210 metres, which is controlled by the existing drilling. The interpretation of the mineralized envelops was based solely on lithium grades and did not take into account other elements (Ta, Rb, Cs, Ga, Be). However, these other elements were interpolated inside the lithium-mineralized envelopes. On several occasions, the pegmatitic dykes yielded significant grades for one or more of these other elements but were accompanied by lithium grades below cut-off. These dike extensions were excluded from the resource estimation. The authors believe that a re-evaluation of the deposit should be conducted in order to take into account tantalum-rich zones where lithium is absent. There is considerable potential to increase tonnage with additional drilling of the known pegmatitic dykes at depth and along strike. In addition, the current geological setting suggests that there is reasonable potential to identify new zones in the immediate environment. Further drilling at the Rose deposit should be conducted using an orientation of N206 with a dip of -60 in order to adequately test the Pivert pegmatite dyke. The dykes and grades correlate well and show good continuity throughout the sections. The fact that the pegmatite dykes at Rose are shallow and subparallel to the surface is a significant advantage for this project and should be taken into account when further evaluating its economical potential. First Gold's exploration and drilling work since 2009 has yielded many significant drill hole intercepts that were used by InnovExplo to produce a better geological interpretation for the Rose deposit and to confirm the potential of the entire property area for new discoveries. Although the Rose deposit is currently the most advanced area of the property in terms of exploration, three other identified showings on Block A (Pivert, JR and Hydro) appear very promising and should be further investigated by either trenching or drilling since they display similarities with the Rose deposit in terms of mineralogy, grades and thickness (according to surface observations). Field work also shows that these three showings dip gently subparallel to the surface, as is the case for Rose. JR and Hydro have not yet been drilled, but First Gold drilled three holes on Pivert in 2009. InnovExplo believes that the latter holes were oriented down-dip and therefore missed the target.
Additional drilling is required as part of a drilling program in order to determine the extent of the Pivert showing. Based on the recent information obtained from the Rose deposit, the authors suggest that the drill should be oriented N206 with a dip of -60 in order to adequately test the Pivert pegmatite dyke. The West-Ell showing should be visited by First Gold's geologists to determine the extent of what has been historically described as molybdenum mineralization within veinlets crosscutting a pegmatite dyke. The dyke should be analyzed because it may be part of the same pegmatite group as the Rose, Pivert, JR and Hydro pegmatites, potentially hosting similar mineralization. As discussed in Section 8 (Deposit Types – Item 10), the regional zoning of pegmatites around parental granites has been well demonstrated in the past (ex. Cerny, 1992b). The Li-rich complex pegmatites are invariably the most distal ones relative to the parent plutons (Cerny et al., 2005). This suggests that new discoveries in the area of Rose, Pivert, JR and Hydro should host similar mineralization. InnovExplo's preliminary data compilation and review of historical reports concerning the Pivert-Rose property revealed significant potential for the discovery of new lithium and rare-element pegmatites over the entire property. The property is strategically positioned in an area known to be associated with this type of mineralization. Although the Rose deposit is at an advanced stage of exploration, the sheer size of the rest of the dominantly unexplored remainder of the property leads InnovExplo to consider Pivert-Rose as an earlystage project with great potential for discovering additional mineralization. ## 20.0 RECOMMENDATIONS (Item 22) InnovExplo recommends additional work to confirm the economic potential of the Rose deposit and the rest of the Pivert-Rose property, which has seen very little exploration in the past. Lateral and depth extensions of the Rose deposit should be investigated. Perpendicular channel samples could be analyzed and professionally surveyed in order to collect information for a future resource estimate. Since the literature mentions several deposits elsewhere that contain holmquistite (a lithium-magnesium mineral) as a metasomatic replacement mineral along the edges of lithium-rich pegmatites, the borders of the pegmatites at Rose should be systematically sampled over at least one metre. If anomalous results are obtained, more samples should be taken to cover the entire metasomatized wall rock. A preliminary metallurgical testing is recommended on mineralization from the Rose deposit. A composite sample of 100 kg recovered from HQ-size drill core (or from surface samples) should be used for the metallurgical tests. The tests should include a mineralogical evaluation of the mineralization and standard characterization tests (head analysis, comminution and basic environmental testing). Following the metallurgical testing, InnovExplo recommends a prefeasibility study to determine the potential economic viability of the Mineral Resources. Both open pit and underground scenarios may need to be evaluated for the Rose deposit. The prefeasibility study would also have the objective of determining an area for bulk sampling and would include a cost and time estimate for the bulk sampling program. InnovExplo also recommends that First Gold consider drilling the Pivert, JR and Hydro showings, and perhaps West-Ell, to determine their potential. Drilling a stratigraphic fence NE and SW of the Rose deposit should also be considered in order to potentially identify other mineralized structures associated with Rose. Apart from immediately drilling the known mineralized pegmatites, a creek-sediment geochemical survey and a visual satellite photo reconnaissance program covering the entire property could be the first step in determining which portions of the property should be investigated more closely. Based on the results, systematic geological survey grids should be established and geochemistry rock samples collected. The following discussion about a regional- to property-scale exploration program is largely borrowed from Selway et al. (2005), which provides exploration guidelines for targets and contexts similar to those on the Pivert-Rose property. Based on the conclusions of these authors, any exploration project for rare-element pegmatites in the Superior Province should begin with an examination of a regional geology map. Rare-element pegmatites occur along large regional-scale faults in terranes metamorphosed to greenschist and amphibolite facies. They commonly have mafic metavolcanic or metasedimentary host rocks and are located near peraluminous granite plutons (A/CNK > 1.0). If no peraluminous parent granites crop out in the area, then a lithogeochemical survey of the Li, Rb, Cs and B contents in mafic metavolcanic and metasedimentary rocks should be performed to identify metasomatized host rocks. If a peraluminous granite pluton has been identified, then the next step is to determine if the pluton is barren or fertile. Bulk whole-rock samples of granites and aplites should be collected to determine their rare-element content. Fertile granites have rare-element contents at least three times that of average granites in the upper continental crust. Fertile granites have Mg/Li < 10 and Nb/Ta < 8. Potassium feldspar tends to be pink and medium grained in barren granites, but in potassic pegmatite and rare-element pegmatites, it tends to be white (but also may be grey, pink, or peach) and blocky (>5 cm). Muscovite in a barren granite tends to be silver-coloured and medium-grained, whereas muscovite in fertile granites tends to be green and coarse grained (>2 cm across). Fertile granites have accessory garnet, tourmaline, fluorapatite, and/or cordierite, which are absent in barren granites. Graphic textures are common in fertile granites and consist of intergrowths of K-feldspar + quartz, muscovite + quartz, tourmaline + quartz, and rarely garnet + quartz. Once a fertile granite pluton has been identified, the geographic direction in which it is fractionating must be determined. With increasing fractionation, the fertile granite changes in composition from biotite granite to two-mica leucogranite to coarse-grained muscovite leucogranite and finally to pegmatitic leucogranite with intercalated layers of potassic pegmatite and sodic aplite. The mica assemblage changes from biotite-only to biotite+muscovite to muscovite-only. Beryl and ferro-columbite occur in the most fractionated parts of the fertile granite. Key fractionation indicators can be plotted on a map of the pluton to determine the fractionation direction: for example, the presence of tourmaline, beryl and ferro-columbite; Mn content in garnet; Rb content in bulk K-feldspar; and Mg/Li and Nb/Ta ratios in bulk whole-rock samples. Rare-element pegmatites may be found at the furthest extent of these physical and chemical fractionation trends. The residual fractionated granitic melt that remains after crystallization of a fertile granite intrusion can intrude along fractures in the host rock to form pegmatite dykes. With increasing distance from the parent fertile granite, the pegmatite dykes will contain the following index minerals: - 1) Beryl; - 2) Beryl and ferro-columbite; - 3) Beryl, tantalite (ferro-tantalite or mangano-tantalite), and Li-rich aluminosilicates (such as petalite or spodumene): - 4) Beryl, manganotantalite, Li-rich aluminosilicates, and pollucite. Pegmatite dykes with the most economic potential for Li-Cs-Ta deposits occur the greatest distance (up to 10 km) from the parent granite. Metasomatized host rocks are an indication of a rare-element pegmatite nearby, because pegmatitic fluids commonly alter the composition of the host rocks. Metasomatic aureoles can be identified by their geochemistry: they contain elevated Li, Rb, Cs, B and F contents. Anomalies from a systematic lithogeochemical survey should indicate metasomatized host rocks in close proximity to pegmatite dykes. Metasomatic aureoles can also be identified by their mineralogy: the presence of tourmaline, (Rb,Cs)-enriched biotite, holmquistite, muscovite, and rarely garnet. Purple holmquistite is a good indicator mineral, because it usually occurs within 10 m of a rare-element pegmatite (London, 1986). Compositions of bulk K-feldspar and muscovite are excellent exploration tools because these minerals are common in barren granite, fertile granite and rare-element pegmatites. The Rb and Cs contents increase in K-feldspar and muscovite with increasing fractionation of the granitic melt. Pegmatites with the highest degree of fractionation (and thus the most economic potential for Li-Cs-Ta) contain blocky K-feldspar with >3,000 ppm Rb, K/Rb < 30, and >100 ppm Cs. Pegmatites with the most economic potential usually contain coarse-grained green muscovite with >2,000 ppm Li, >10,000 ppm Rb, >500 ppm Cs, and >65 ppm Ta. Pegmatite samples containing muscovite with >65 ppm Ta have a high probability of containing Ta-Nb mineralization (Gordiyenko, 1971). Once a pegmatite dyke has been located, the next step is to assess its degree of fractionation and thus its potential for containing Ta mineralization. Bulk whole-rock analysis of pegmatitic and aplite zones will contain elevated rare-element contents (e.g., Li, Rb, Cs, Nb, Ta, Sn) in highly evolved pegmatites. Pegmatites with Ta mineralization usually also contain Li-rich minerals (e.g., spodumene, petalite, lepidolite, elbaite, amblygonite, lithiophilite, eucryptite) and may contain Cs-rich minerals (e.g., pollucite, Cs-rich beryl). Pegmatites with Cs-rich minerals have a greater probability of containing economic Ta mineralization than pegmatites without Cs-rich minerals. InnovExplo is of the opinion that the character of the Pivert-Rose property is of sufficient merit to justify the recommended exploration program described below. The
program is divided into two (2) phases. Expenditures for the **Phase I work program are estimated at C\$2,737,000** (including 15% for contingencies). Expenditures for the **Phase II work program are estimated at C\$2,512,750** (including 15% for contingencies). The **grand total is C\$5,249,750** (including 15% for contingencies). Phase II of the program is conditional on the success of Phase I. #### Phase I – Regional Prospecting, Drilling and Metallurgical Testing #### Phase 1a) Drilling on Rose The objective of drilling on Rose during Phase 1 is to continue to investigate its potential lateral and depth extensions. A total of 10,000 metres in approximately 75 holes is recommended. #### Phase 1b) Metallurgical testing on Rose Preliminary metallurgical testing is recommended on mineralized rocks from the Rose deposit. A composite sample of 100 kg recovered from HQ-size drill core (or from surface samples) should be used for the metallurgical tests. The tests should include a mineralogical evaluation of the mineralization and standard characterization tests (head analysis, comminution and basic environmental testing). #### Phase 1c) Drilling of currently identified showings Drilling is recommended for three of the known showings (Pivert, Hydro and JR), and potentially for a fourth (West-Ell) if a visit confirms the significance of its mineralization. The total number of metres will be determined by the results, but an initial phase of 300 metres per showing should be considered for a minimum total of 900 metres (1,200 m if West-Ell is included). #### Phase 1d) Regional survey Systematic grids should be ground prospected on the large and relatively unexplored Pivert-Rose property. Using a 250-m grid, samples of every outcropping intrusion should be assayed in order to identify their fertility. Every pegmatite should be sampled regardless of any pre-defined grid. Creek sediments should also be collected and assayed. It is estimated that a total of 35 days with four prospectors and the use of a helicopter will be needed. #### Phase II – Pre-feasibility on Rose, Delimitation and Exploration Drilling #### Phase 2a) Pre-feasibility on Rose InnovExplo recommends a pre-feasibility study to determine the potential economic viability of the Mineral Resources. Both open pit and underground scenarios may need to be evaluated for the Rose deposit. The pre-feasibility study would also have the objective of determining an area for bulk sampling and would include a cost and time estimate for the bulk sampling program. #### Phase 2b) Delimitation drilling on showings other than Rose The objective of delimitation drilling on showings other than Rose is to continue to investigate their potential extensions laterally and at depth. Positive results from delimitation drilling will potentially lead to a resource estimate on these showings. Although it may be possible to delimit all of the new showings in Phase 1, another 10,000 metres in approximately 100 holes is recommended at this stage for the best targets defined during Phase 1. #### Phase 2c) Drilling new regional exploration targets on the property Drilling should be considered for any new mineralization recognized during the regional survey presented in Phase 1. The number of metres will be determined by the number of targets, but InnovExplo estimates approximately 1,500 metres in ±15 holes for drilling the best targets. #### Phase 2d) New 43-101 Technical Report with updated Resource Estimate A new 43-101 Technical Report should be produced after completion of Phase 2. The report should include an updated Resource Estimate taking into consideration all new drilled areas. Table 20.1 – Budget estimate for the Phase I and II work programs | | Phase 1 - Work Program | Pivert-Rose Property | | | |----|--|----------------------|---------------|--| | | Regional Prospecting, Drilling and Resource Estimate | Description | Cost | | | | | | | | | 1a | Drilling on Rose (all-inclusive, \$150 per metre) | 10,000 m | \$ 1,500,000 | | | | | | | | | 1b | Metallurgical testing on Rose | | \$ 50,000 | | | | | | | | | 1c | Drilling known showings (all-inclusive, \$150 per metre) | 1,200 m | \$ 180,000 | | | | | | | | | 1d | Regional survey (geology and geochemistry) | | \$ 650,000 | | | | | | | | | | Contingencies (~ 15%) | | \$ 357,000 | | | | | | | | | | Phase 1 subtotal | | C\$ 2,737,000 | | | | Phase 2 - Work Program | Pivert-Rose Property | | | |----|---|----------------------|---------------|--| | | Delimitation and Exploration Drilling, Metallurgical Testing, and Scoping study | Description | Cost | | | | | | | | | 2a | Pre-feasibility study on Rose | | \$ 250,000 | | | 2b | Delimitation on showings other than Rose (all-inclusive, \$150 per metre) | 10,000 m | \$ 1,500,000 | | | 2c | Drilling new regional targets (all-inclusive, \$240 per metre) | 1,500 m | \$ 360,000 | | | 2d | Updated 43-101 Technical Report | | \$ 75,000 | | | | Contingencies (~ 15%) | | \$ 327,750 | | | | Phase 2 subtotal | | C\$ 2,512,750 | | TOTAL (Phase 1 and Phase 2) C\$ 5,249,750 ## 21.0 REFERENCES (Item 23) - AVRAMTCHEV, L and DUBE, C, 1976. Compilation Geologique Du Territoire De La Baie De James; Government Work Report DP 358 - AVRAMTCHEV, L, 1983. Catalogue Des Gites Mineraux: Region De La Baie James; Government Work Report DPV 940 - BAADSGAARD, H. and ČERNÝ, P., 1993. Geochronological studies in the Winnipeg River pegmatite populations, southeastern Manitoba. Geological Association of Canada—Mineralogical Association of Canada, Annual Meeting, Edmonton 1993, Program with Abstracts, 18, p. A5. - BARR, W H and BUXBAUM, R W, 1974. Summary Report On Mineral Resource Studies In The James Bay Region, Batellet Columbus Laboratories; Assessment Report GM 34002 - BEAUMIER, M and CHARTRAND, F, 1994. Vers Une Meilleure Connaissance Du Potentiel Mineral Du Territoire De La Baie De James; Government Work Report PRO 94-05 - BEAUMIER, M and KIROUAC, F, 1996. Serie De Cartes Geochimiques Couleur. Echantillonnage Des Sediments De Lac. Region Du Lac Nemiscau (Snrc 32n); Government Work Report MB 96-22 - BOILY, M and MOUKHSIL, A, 2003. GEOCHIMIE DES ASSEMBLAGES VOLCANIQUES DE LA CEINTURE DE ROCHES VERTES DE LA MOYENNE ET DE LA BASSE-EASTMAIN, PROVINCE DU SUPERIEUR, QUEBEC; Government Work Report ET 2002-05 - BOILY, M., 1999 Geochimie et tectonique des vo1canites du segment de Frotet-Troilus et de la bande de la riviere Eastmain. Ministère des Ressources naturelles, Quebec; MB 99-11, 71 pages. - BREAKS, F.W., SELWAY, J.B. and T INDLE, A.G. (2005): Fertile peraluminous granites and related rare-element pegmatite mineralization, Superior Province of Ontario. In Rare-Element Geochemistry and Mineral Deposits (R.L. Linnen and I.M. Samson, eds.). Geol. Assoc. Can., Short Course Notes 17, 87-125. - BREAKS, F.W. and TINDLE, A.G., 1997b. Rare element exploration potential of the Separation Lake area: An emerging target for Bikita-type mineralization in the Superior province of northwest Ontario. Ontario Geological Survey, Open File Report 5966, 27 p. - BREAKS, F.W. and TINDLE, A.G., 2001. Rare element mineralization of the Separation Lake area, northwest Ontario: Characteristics of a new discovery of complex type, petalite-subtype, Li-Rb-Cs-Ta pegmatite. In Industrial Minerals in Canada. Edited by S. Dunlop and G.J. Simandl. Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 53, p. 159-178. - BREAKS, F.W., SELWAY, J.B. and TINDLE, A.G., 2002. Fertile and peraluminous granites and related rare element pegmatite mineralization, Superior province, northeastern Ontario, Project Unit 02-003. In Summary of Field Work and Other Activities 2002. Ontario Geological Survey, Open File Report 6100, p. 6-1 to 6-42. - BREAKS, F.W., SELWAY, J.B. and TINDLE, A.G., 2003. Fertile peraluminous granites and related rare element mineralization in pegmatites, Superior province, northwest and northeast Ontario: Operation Treasure Hunt. Ontario Geological Survey, Open File Report 6099, 179 p. - BREAKS, F.W., TINDLE, A.G. and SMITH, S.R., 1999. Geology, mineralogy, and exploration potential of the Big Mack pegmatite system: A newly discovered western extension of the - Separation Rapids pegmatite group, NW Ontario. In Summary of Field Work and Other Activities 1999. Ontario Geological Survey, Open File report 6000, p. 25-1 to 25-22. - CAMERON, E.N., JAHNS, R.H., MCNAI R, A.H. and PAGE, L.R. (1949): Internal structure of granitic pegmatites. Econ.Geol., Monogr. 2. - CARD, K.D. CIESIELSKI, A., 1986 DNAG WI Subdivisions of the Superior Province of the Canadian Shield. Geoscience Canada; volume 13, pages 5-13. - CARLSON, E H and EAKINS, P R, 1968. Grand-Detour–Village Lakes Area, Mistassini Territory and New Quebec; Government Work Report RG 136(A) - CARLSON, E H and EAKINS, P R, 1968. Region de Grand-Detour–Lacs Village, Territoire de Mistassini et Nouveau-Québec; Government Work Report RG 136 - CARLSON, E H, 1962. Preliminary Report on Pivert Lake Area, Mistassini Territory and New Quebec; Government Work Report RP 483(A) - CARLSON, E H, 1962. Rapport Préliminaire sur la Region du Lac Pivert, Territoire de Mistassini et Nouveau-Québec: Government Work Report RP 483 - CARON, K, 2006. Rapport des Travaux d'Exploration, Campagne Été 2005, Projet Lac Anatacau; Assessment Report GM 62451 - CARTER, G., 2010. Technical Report on the Spodumene Resources on the James Bay Lithium Project; For Lithium One Inc., 50 pages. - ČERNÝ, P. and ERCIT, T.S., 1985. Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull. Minéral. 108, 499-532. - ČERNÝ, P., 1990. Distribution, affiliation and derivation of rare-element granitic pegmatites in the Canadian Shield. Geol. Rundschau 79, 183-226. - ČERNÝ, P., BLEVIN, P.L., CUNEY, M. and L ONDON, D. (2005a): Granite-related ore
deposits. Econ. Geol., 100th Anniversary Volume, 337-370. - ČERNÝ, P. and ERCIT, T.S., 2005. The classification of granitic pegmatites revisited. In The Canadian Mineralogist, Vol. 43, pp. 2005-2026. - ČERNÝ, P., 1991c. Rare-element granitic pegmatites. II. Regional to global environments and petrogenesis. Geosci. Can. 18, 68-81. - ČERNÝ, P., 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl. Geochem. 7, 393-416. - ČERNÝ, P., 2005. The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons. In Rare-Element Geochemistry and Mineral Deposits (R.L. Linnen and I.M. Samson, eds.). Geol. Assoc. Can., Short Course Notes 17, 127-158. - ČERNÝ, P., 1989a. Exploration strategy and methods for pegmatite deposits of tantalum. In Lanthanides, Tantalum, and Niobium. Edited by P. Moller, P. Černý and F. Saupe. Springer-Verlag, New York, p. 274-302. - ČERNÝ, P., 1989b. Characteristics of pegmatite deposits of tantalum. In Lanthanides, Tantalum, and Niobium. Edited by P. Moller, P. Černý and F. Saupe. Springer-Verlag, New York, p. 195-239. - ČERNÝ, P., 1991a. Rare-element granitic pegmatites. Part I: anatomy and internal evolution of pegmatite deposits. Geoscience Canada; volume 18, pages 49-67. - ČERNÝ, P., 1991b. Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geoscience Canada; volume 18, pages 68-81. - ČERNÝ, P., ERCIT, T.S. and VANSTONE, P.J., 1998. Mineralogy and petrology of the Tanco rare element pegmatite deposit, southeastern Manitoba. International Mineralogical Association, 17th General Meeting, Field Trip Guidebook B6, 74 p. - ČERNÝ, P., TRUEMAN, D.L., ZIEHLKE, D.V., GOAD, B.E. and PAUL, B.J., 1981. The Cat Lake-Winnipeg River and the Wekusko Lake pegmatite fields, Manitoba. Manitoba Department of Energy and Mines, Mineral Resources Division, Economic Geology Report ER80-1, 216 p. - CHARBONNEAU, R., 2006. Campagne Régionale d'Échantillonnage du Till, Propriété Anatacaules, Consultants Inlandsis; Assessment Report GM 62452 - CHARBONNEAU, R., 2007. Suivi d'Échantillonnage de Till 2006, Propriété Anatacaules, Chemex; Assessment Report GM 63267 - CHARTRAND, F. and GAUTHIER, M., 1995. Cadre Géologique et Potentiel Minéral des Roches Archéennes du Bassin de La Grande Rivière, Baie James; Government Work Report PRO 95-06 - DE CORTA, H., 2008. Rapport sur un Leve D'echantillons de Materiel Fluvioglaciaire dans la Moraine de Sakamitable Jamesienne de Concertation Miniere; Assessment Report GM 63631 - DEMERS, J.R., 1969. Evaluation Portant Sur L'accessibilite et Le Developpement De La Region Du Nord-Ouest Quebecois; Assessment Report GM 32951 - DESBIENS, H., 2008. Diamond Assessment Work Report, Pontax Diamond Project, Exploration Dios Inc; Assessment Report GM 63907 - DION, D.J. and LONCOL-DAIGNEAULT, D., 2006. Donnees Numeriques Des Leves Geophysiques Aeroportes Verses Aux Travaux Statutaires Region Opatica-La Grande; Government Work Report DP-2006-04 - DUBÉ, C., 1974. Geochimie Des Sediments De Ruisseau: Region Du Lac Champion (Nouveau-Quebec); Government Work Report DP 419 - DUBÉ, C., 1974. Rapport Preliminaire De La Region Du Lac Champion; Government Work Report DP 278 - DUBÉ, C., 1978. Region Des Lacs Champion, Tesecau Et De La Riviere Rupert (Territoire De Mistassini Et D'abitibi) Compilation; Government Work Report DPV 585 - FRANCONI, A., 1978 La bande volcano-sedimentaire de la riviere Eastmain inferieure. Ministère des Richesses naturelles, Quebec; DPV-574; 177 pages and 2 plans. - FRANCONI, A., 1975. Rapport Geologique Preliminaire Sur La Region De La Riviere Eastmain Inferieure (Territoires De Mistassini Et Du Nouveau-Quebec); Government Work Report DP 329 - FRANCONI, A., 1978. La Bande Volcanosedimentaire De La Riviere Eastmain Inferieure Rapport Geologique Final; Government Work Report DPV 574 - FURIC, R. E. and GIRARD, R., 2007. Campagne D'exploration Et De Cartographie Dans Le Secteur De La Riviere Pontax, Projet Pontaxios Services Geoscientifiques Inc; Assessment Report GM 63046 - FURIC, R. E. and GIRARD, R., 2008. Campagne D'exploration Et De Cartographie Regionale 2007 Dans Le Secteur De La Riviere Pontax, Projet Pontax Regional 2007ios Services Geoscientifiques Inc; Assessment Report GM 63467 - GAUTHIER, M. and LAROCQUE, M., 1998. Cadre Geologique, Style Et Repartition Des Mineralisations Metalliques De La Basse Et De La Moyenne Eastmain, Territoire De La Baie James; Government Work Report MB 98-10 - GAUTHIER, M. and LAROCQUE, M., 1998 Cadre geologique, style et repartition des mineralisations metalliques de la Basse et de la Moyenne-Eastmain, Territoire de la Baie-James. Ministère des Ressources naturelles, Quebec; MB 98-10, 85 pages. - GILLAIN, P.R. and REMICK, J.H., 1963. Région De Fort-Rupert; Government Work Report CARTE 1510 - GINSBURG, A.I., TIMOFEYEV, I.N. and F ELDMAN, L.G., 1979. Principles of Geology of the Granitic Pegmatites. Nedra, Moscow, USSR (in Russ.). - GIRARD, P., 1975. Report On Airborne Geophysical Survey, Pontax Projectkenting Earth Sciences Ltd; Assessment Report GM 34073 - GIRARD, R. and LALANCETTE, J., 2006. Campagne D'echantillonnage De Sediments Lacustres Dans Les Basses Terres De La Baie James, Projet Lac Anatacauios Services Geoscientifiques Inc; Assessment Report GM 62356 - GIRARD, R., 2007. 2eme Campagne D'echantillonnage Regionale Du Till, Projet Pontaxios Services Geoscientifiques Inc; Assessment Report GM 62837 - GIRARD, R., 2008. Campagne D'echantillonnage De Sediments Lacustres Dans La Region Des Basses Terres De La Baie De James, Propriete Pontaxios Services Geoscientifiques Inc; Assessment Report GM 63475 - GLESON, C.F., 1975. Geochemical Report On A Lake Sediment Survey, Bereziuk Lake, Eastmain River And Rupert River Areas, C.F. Gleeson & Associates Ltd; Assessment Report GM 34046 - GLEESON, C. F., 1976. 126 Plans D'un Leve Geochimique (Sediments De Lac), Region Du Lac Bereziuk, Riviere Eastmain et Riviere Rupertc F Gleeson & Associates Ltd; Assessment Report GM 34047 - GOUTIER, J., DION, C., DAVID, J., and DION, O.J., 1999a. Géologie de la Région de la Passe Shimusuminu et du Lac Vion (33FI 11,33F/12). Ministère des Ressources naturelles, Quebec; RG 98-17, 41 pages. - GOUTIER, J., DION, E., LAFRANCE, I., DAVID, J., PARENT, M., and DION, O.J., 1999b. Geologie de la region des lacs Langelier et Threefold (33F 103, 33F 104). Ministère des Ressources naturelles, Quebec; RG 98-18, 52 pages. - GOUTIER, J., DION, E., OUELLET, M.E., DAVIS, O.W., DAVID, J., and PARENT, M., 2002. Geologie de la region du lac Guyer (33G/05, 33G/06 et 33G/11). Ministère des Ressources naturelies, Quebec; RG 2001-15, 53 pages. - LAFERRIÈRE, A., 2010. NI 43-101 Technical Report, Mineral Resource Estimation, Whabouchi Lithium Deposit; For Nemaska Exploration Inc. 159 pages. - LAMBERT, G., 2006. Rapport D'interpretation Sur Des Travaux Geophysiques Heliportes, Leves Aeromagnetometriques Et Electromagnetiques De Type Aerotem Ii, Projet Anatacaugerard Lambert Geosciences; Assessment Report GM 62446 - LAMOTHE, D., 2007. Cibles pour l'Exploration de Gîtes d'Or Orogénique Région de la Baie-James; Government Work Report PRO 2007-05 - LAMOTHE, D., 2007. EXPLORATION TARGETS FOR OROGENIC GOLD DEPOSITS JAMES BAY REGION; Government Work Report PRO 2007-06 - LAMOTHE, D., 2008. ; ASSESSMENT OF THE POTENTIAL FOR OROGENIC GOLD DEPOSITS IN THE BAIE-JAMES REGION; Government Work Report EP 2008-02 - LAMOTHE, D., 2008. CIBLES POUR L'EXPLORATION DE GITES PORPHYRIQUES DU CU-AU ± MO REGION DE LA BAIE-JAMES; Government Work Report PRO 2008-03 - LAMOTHE, D, 2008. EVALUATION DU POTENTIEL EN MINERALISATIONS DE TYPE OR OROGENIQUE DE LA BAIE JAMES; Government Work Report EP 2008-01 - LAMOTHE, D., 2008. EXPLORATION TARGETS FOR PORPHYRY CU-AU±MO DEPOSITS, JAMES BAY REGION; Government Work Report PRO 2008-04 - LAMOTHE, D., 2009. ; ASSESSMENT OF THE POTENTIAL FOR PORPHYRY CU-AU ± MO DEPOSITS IN THE BAIE-JAMES REGION; Government Work Report EP 2009-02 - LAMOTHE, D., 2009. EVALUATION DU POTENTIEL MINERAL POUR LES GITES PORPHYRIQUES DE CU-AU ± MO DE LA BAIE-JAMES; Government Work Report EP 2009-01 - LASALLE, P., 1985. STRATIGRAPHIE DU QUATERNAIRE DU QUEBEC: UNE REVUE; Government Work Report MB 85-11 - LONDON, D., 2005. Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80, 281-303. - LONDON, D., 1986. Holmquistite as a guide to pegmatitic rare metal deposits. Economic Geology, 81, p. 704-712. - LU, H.Z. and WANG, Z.G. (1997): Geology and fluid inclusion studies on Keketuohai No. 3 rareelement pegmatite, Xinjiang, northwest China. 30th Int. Geol. Congress, Proc. 16, 277-297. - MALO LALANDE, C, 2007. LEVE HELIPORTE DE MAGNETOMETRIE ET D'ELECTROMAGNETISME AEROTEM-II, RAPPORT D'INTERPRETATION, PROPRIETE PONTAXABITIBI GEOPHYSIQUE INC; Assessment Report GM 63034 - MARLEAU, R A, 1979. ETUDE PRELIMINAIRE DU POTENTIEL EN MINERAUX INDUSTRIELS & CERTAINS METALLIQUES DU TERRITOIRE DE LA BAIE JAMES; Assessment Report GM 38167 - MCCREA, J G, 1936. EASTMAIN RIVER EXPLORATION; Assessment Report GM 09863-A - MOORHEAD, J and BEAUMIER, M, 1999. KIMBERLITES, LINEAMENTS ET RIFTS CRUSTAUX AU QUEBEC; Government Work Report MB 99-35 - MOUKHSIL, A and LEGAULT, M, 2003. SYNTHESE GEOLOGIQUE ET METALLOGENIQUE DE LA CEINTURE DE ROCHES VERTES DE LA MOYENNE ET DE LA BASSE-EASTMAIN (BAIE-JAMES); Government Work Report ET 2002-06 - MOUKHSIL, A, 2000. GEOLOGIE DE LA REGION DES LACS PIVERT (33C/01), ANATACAU (33C/02), KAUPUTAUCHECHUN (33C/07) ET WAPAMISK (33C/08); Government Work Report RG 2000-04 - MOUKHSIL, A. DOUCET, P., 1999 Geologie de la region des lacs Village (33B/03). Ministère des Ressources naturelles, Quebec; RG 99-04, 32 pages. - MOUKHSIL, A. LEGAULT, M., 2002 Geologie de la region de la Basse-Eastmain occidentale (33D/O I, 33D/02, 33D/07 et 33D/08). Ministère des Ressources naturelles, Quebec; RG 2002-09, 29 pages. - MOUKHSIL,
A. VOICU, G. DION, C. DAVID, J. DAVIS, D.W. PARENT, M., 2001 Geologie de la region de la Basse- Eastmain centrale (33C/03, 33C/04, 33C/05 et 33C/06). Ministerc des Ressources naturelles, Quebec; RG 2001-08, 52 pages. - MOUKHSIL, A., 2000 Geologic de la region des lacs Pivert (33Cl01), Anatacau (33Cl02), Kauputauchechun (33Cl07) et Wapamisk (33Cl08). Ministère des Ressources naturelles, Quebec; RG 2000-04, 48 pages. - MOUKHSIL, A., Legault, M., Boily, M., Doyon, J., Sawyer, E., Davis, D.W., 2007. Geological and metallogenic synthesis of the Middle and Lower Eastmain greenstone belt (Baie-James). Document Published by Géologie Québec, Report Number ET 2007-01, 58 pages. - OSWALD, R, 2008. RAPPORT GEOLOGIQUE ET RECOMMANDATIONS, TRAVAUX DE TERRAIN 2007, PROJET ANATACAUSERVICES TECHNIQUES GEONORDIC INC; Assessment Report GM 63606 - OTIS, M, 1980. PROJET LIENMETRICLAB INC; Assessment Report GM 37998 - OYA RZÁBAL, J.C. and GALLISKI, M.A. (1993): Geología del yacimiento San Luis: un caso de yuxtaposición de tipologías diferentes en pegmatitas de clase elementos raros. Actas 12° Congreso Geológico Argentino 5, 167-174. - PARTINGTON, G.A., MCNAUGHTON, N.J. and WILLIAMS, I.S., 1995. A review of the geology, Mineralization and geochronology of the Greenbushes pegmatite, Western Australia. Economic Geology, 90, p. 616-635. - PEZZOTTA, F. (2000): Internal structures, paragenesis and classification of the miarolitic Libearing complex pegmatites of Elba Island (Italy). Memorie Soc. It. Sci. Nat. Museo - PRIDE, C, 1974. LAKE SEDIMENT GEOCHEMISTRY; Assessment Report GM 34044 - PYE, E.G., 1965. Geology and lithium deposits of the Georgia Lake area, District of Thunder Bay. Ontario Department of Mines, Report 31, 113 p. - RHEAULT, M, 1990. TRAITEMENT ET ANALYSE DE DONNEES LANDSAT TM ET GEOPHYSIQUES, REGION DE LA BAIE JAMESGROUPE CONSEIL ROCHE LTEE; Assessment Report GM 49771 - SAVIGNET, O and MOUGE, P, 2008. LEVE MAGNETIQUE HELIPORTE COLIBRI SUR LES PROPRIETES ELEONORE REGIONAL, GIPOULOUX, WABAMISK ET ANATACAUNOVATEM INC; Assessment Report GM 63781 - SELWAY, J.B., BREAKS, F.W., and TINDLE, A.G., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, Vol. 14, Nos. 1-4, pp. 1-30. - SOLODOV, N.A. (1962): Internal Structure and Geochemistry of Rare-Element Granitic Pegmatites. Academy Sci. USSR, Moscow, USSR (in Russ.). - ST-HILAIRE, C, 2005. HIGH SENSITIVITY AEROMAGNETIC SURVEY, PROCESSING AND LOGISTIC REPORT, LAC MIRABELLI 2 PROJECT, BLOCKS MIR2A, MIR2B AND MIR3AFUGRO AIRBORNE SURVEYS; Assessment Report GM 63031 - STILLING, A., 1998. Bulk composition of the Tanco pegmatite at Bernic Lake, Manitoba, Canada. M.Sc. thesis, University of Manitoba, Winnipeg, Manitoba, 76p. - TEERTSTRA, D.K. and ČERNÝ, P., 1995. First natural occurrences of end-member pollucite: A product of lowtemperature re-equilibration. European Journal of Mineralogy, 7, p. 1137-1148. - Thoreau, J. (1950): La pegmatite stannifère de Manono, Katanga. C.R. de Travaux, Congrès Scientifique Elisabethville 41, 1-33. - THURSTON, P.C., 1991 -Archean Geology of Ontario: Introduction. In: Geology of Ontario. Ontario Geological Survey; special volume 4, part I, pages 73-78. - TREMBLAY, M and MARLEAU, R A, 1975. ETUDE DE LA GEOLOGIE ET DU POTENTIEL MINERAL DU TERRITOIRE DE LA BAIE-JAMES; Assessment Report GM 34001 - UNKNOWN AUTHOR, 1972. EVALUATION DU POTENTIEL MINIER DU BASSIN DE LA BAIE JAMESCARON, DUFOUR, SEGUIN & ASSOCS; Assessment Report GM 34000 - UNKNOWN AUTHOR, 1981. CARTE DE LOCALISATION DES TRAVAUX GEOSCIENTIFIQUES 032N; Government Work Report CL 032N - UNKNOWN AUTHOR, 1981. CARTE DE LOCALISATION DES TRAVAUX GEOSCIENTIFIQUES 033C; Government Work Report CL 033C - UNKNOWN AUTHOR, 1991. CARTE DE LOCALISATION DES GITES MINERAUX 032N; Government Work Report FG 032N CL - UNKNOWN AUTHOR, 1991. CARTE DE LOCALISATION DES GITES MINERAUX 033C; Government Work Report FG 033C CL - VALIQUETTE, G, 1974. EXPLORATION GEOLOGIQUE DU COMPLEXE DE MOUTON; Assessment Report GM 30960 - VALIQUETTE, G, 1974. EXPLORATION GEOLOGIQUE DU COMPLEXE DE MOUTON; Assessment Report GM 34071 # 22.0 SIGNATURE PAGE (Item 24) # TECHNICAL REPORT ON THE PIVERT-ROSE PROPERTY (According to Regulation 43-101 and Form 43-101F1) Prepared for #### FIRST GOLD EXPLORATION INC. 370 rue des Magnolias Laval (Québec) CANADA H7A 0A3 Phone: (514) 862-6889 > RICHARD # 1119 Pierre-Luc Richard, B.Sc., P.Geo. (OGQ 1119) Signed at Val-d'Or on January 24, 2011 InnovExplo inc. 560-B, 3^e Avenue, Val-d'Or, Québec, Canada, J9P 1S4 Carl Pelletier, B.Sc., P.Geo. (OGQ 384) InnovExplo inc. 560-B, 3^e Avenue, Val-d'Or, Québec, Canada, J9P 1S4 Signed at Val-d'Or on January 24, 2011 CARL PELLETIER # 23.0 ADDITIONAL REQUIREMENTS FOR TECHNICAL REPORTS ON DEVELOPMENT PROPERTIES AND PRODUCTION PROPERTIES (Item 25) Not applicable. #### 24.0 CERTIFICATES OF AUTHORS - I, Pierre-Luc Richard, B.Sc., P.Geo. (OGQ no. 1119), do hereby certify that: - 1. I am employed by and carried out this assignment for InnovExplo Consulting Firm in Mines and Exploration, 560-B 3rd Avenue, Val-d'Or, Québec, Canada, J9P 1S4, as a Consulting Geologist. - 2. I completed a Bachelor's degree in Geology (B.Sc.) in 2004 from the *Université du Québec à Montréal* (Montreal, Québec). I began a M.Sc. degree at the *Université du Québec à Chicoutimi* (Chicoutimi, Québec) for which I completed the course program but not the thesis. - 3. I am a member in good standing of the *Ordre des Géologues du Québec* (OGQ, no. 1119) and temporary member of Association of Professional Geoscientists of Ontario (APGO 1714). - 4. I have been working as a geologist for more than 5 years. - 5. I have read the definition of "Qualified Person" set out in Regulation 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in Regulation 43-101), and past relevant work experience, I fulfill the requirements to be a "Qualified Person" within the meaning of Regulation 43-101. - 6. I was responsible for the preparation of the technical report titled "TECHNICAL REPORT ON THE PIVERT-ROSE PROPERTY (according to Regulation 43 101 and Form 43 101F1)", dated January 24, 2010 (the "Technical Report"). I visited the core storage facility in Val-d'Or on July 12, 2010 and the Pivert-Rose property on July 13 and 14 for the purposes of this report. - 7. I have no prior involvement with the property that is the subject of the Technical Report. - 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report and for which the omission to disclose would make the Technical Report misleading. - 9. I am independent of the issuer applying the tests in Section 1.4 of Regulation 43-101. - 10. I have read Regulation 43-101 respecting standards of disclosure for mineral projects and Form 43-101F1, and the Technical Report has been prepared in accordance with that regulation and form. - 11. 1 consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report. Dated this 24th day of January 2011, at Val-d'Or (Québec). Pierre-Luc Richard, B.Sc., P.Geo. (OGQ no. ¹ If an issuer is using this certificate to accompany a technical report that it will file only with the exchange, then the exchange recommends that this paragraph is included in the certificate. EBEC First Gold Exploration Inc – Pivert-Rose Property – 43-101 Technical Report - I, Carl Pelletier, P.Geo. (OGQ, no. 384), do hereby certify that: - 1. I am Consulting Geologist with: InnovExplo inc., 560-B 3^e Avenue, Val d'Or, Quebec, Canada, J9P 1S4. - 2. I graduated with a Bachelor of Geology degree from the *Université du Québec à Montréal* (Montréal, Québec) in 1992, and I initiated a Master's degree at the same university for which I completed the course program but not the thesis. - 3. I am a member in good standing of the *Ordre des Géologues du Québec* (OGQ, no. 384) and of the Canadian Institute of Mines, Harricana Section. - 4. I have worked as a geologist for a total of 18 years since my graduation from university. My mining expertise has been acquired in the Silidor, Géant Dormant, Bousquet II, Sigma-Lamaque and Beaufor mines, whereas my exploration experience has been acquired with Cambior Inc. and McWatters Mining Inc. I have been a consulting geologist for InnovExplo inc. since February 2004. - 5. I have read the definition of "qualified person" set out in Regulation 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in Regulation 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of Regulation 43-101. - 6. I was responsible for sections of resources, interpretation-conclusion, recommendations and budget and the supervision of the technical report titled "TECHNICAL REPORT ON THE PIVERT-ROSE PROPERTY (according to Regulation 43 101 and Form 43 101F1)", dated January 24, 2010 (the "Technical Report"). - 7. I have no prior involvement with the property that is the subject of the Technical Report. - 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, and that the omission to disclose would make the Technical Report misleading. - 9. I am independent of the issuer applying all of the tests in Section 1.4 of Regulation 43-101. - I have read Regulation 43-101 respecting standards of disclosure for mineral projects, as well as Form 43-101F1, and the Technical Report has been prepared in accordance with that regulation and form. - 11. I consent to the filing
of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public¹, of the Technical Report. Dated this 24th day of January 2010, at Val-d'Or (Quebec). ¹ If an issuer is using this certificate to accompany a technical report that it will file only with the exchange, then the exchange recommends that this paragraph is included in the certificate. First Gold Exploration Inc - Pivert-Rose Property - 43-101 Technical Report # APPENDIX I # UNITS, CONVERSION FACTORS, ABBREVIATIONS # **Units** Units in this report are metric unless otherwise specified. Precious metal content is reported in grams of metal per metric ton (g/t Au or Ag), unless otherwise stated. Tonnage figures are dry metric tons ("tonnes") unless otherwise stated. Ounces are troy ounces. #### **Abbreviations** | °C | degrees Celsius | OZ | troy ounces | |------------------|-------------------------|------|---------------------------| | ha | hectares | avdp | avoirdupois pound | | g | grams | st | short ton | | kg | kilograms | oz/t | ounces per short ton | | mm | millimetres | t | metric ton (tonne) | | cm | centimetres | Mt | millions of metric tonnes | | m | metres | g/t | grams per metric ton | | km | kilometres | tpd | metric tons per day | | masl | metres above sea level | m³/d | cubic metres per day | | ' or ft | feet | ppb | parts per billion | | cfm | cubic feet per minute | ppm | parts per million | | m³/min | cubic metres per minute | cps | counts per second | | \$ or C\$ or CAD | Canadian dollars | hp | horsepower | | US\$ or USD | American dollars | Btu | British thermal units | | | | | | #### **Conversion factors for measurements** | Imperial Unit | Multiplied by | Metric Unit | |------------------------------|---------------|-------------| | 1 inch | 25.4 | mm | | 1 foot | 0.305 | m | | 1 acre | 0.405 | ha | | 1 ounce (troy) | 31.103 | g | | 1 pound (avdp) | 0.454 | kg | | 1 ton (short) | 0.907 | t | | 1 ounce (troy) / ton (short) | 34.286 | g/t |