

COMMUNIQUÉ DE PRESSE

Le dépôt Rose, une des plus importante ressource de tantale « conflict free » avec une nouvelle ressource indiquée de 26 500 000 tonnes à 1,30 % $\rm Li_2O$ Eq. ou 0,98 % $\rm Li_2O$, 163 ppm $\rm Ta_2O_5$

27 JUILLET 2011 – MONTRÉAL, QUÉBEC – **Corporation Éléments Critiques** (TSX-V : CRE) (US OTCQX : CRECF) (FSE : F12) est heureuse d'annoncer les résultats de la nouvelle évaluation indépendante des ressources sur son projet Rose, Baie-James, Québec.

Le gisement Rose contient 26 500 000 tonnes de ressources indiquées à 1,30 % $L_{12}O$ équivalent (Eq.) ou 0,98 % $L_{12}O$ (259 700 tonnes de $L_{12}O$ ou 642 238 tonnes de $L_{12}CO_3$ Eq), 163 ppm Ta_2O_5 (9 514 317 livres de Ta_2O_5) et 10 700 000 tonnes de ressources inférées à 1,14 % $L_{12}O$ équivalent (Eq.) ou 0,86 % $L_{12}O$ (92 020 tonnes de $L_{12}O$ ou 227 565 tonnes de $L_{12}CO_3$ Eq), 145 ppm Ta_2O_5 (3 414 400 livres de Ta_2O_5). L'estimation des ressources a été établie en utilisant une teneur de coupure de 41 \$/t (modèle fausse à ciel ouvert) et 66 \$/t (modèle sous-terre) soient les teneurs de coupure officielles de ces ressources (prenant la récupération en considération), afin de refléter la ressource dans le contexte du marché actuel. Le rapport technique 43-101 sera disponible sur SEDAR dans les prochains 45 jours.

Cette nouvelle ressource indiquée représente une augmentation du tonnage de 131 %, de 129 % en contenu de Ta_2O_5 et 69 % d'augmentation en contenu de Li_2O . Pour la ressource inférée, il s'agit d'une augmentation du tonnage de 393 %, de 418 % en contenu de Ta_2O_5 et 234 % d'augmentation en contenu de Li_2O .

L'évaluation des ressources actuelles démontre que le gisement Rose est maintenant l'une des plus importante ressource de « **Conflict Free** » Tantale. La ressource est contenue dans vingt-trois dykes de pegmatite subhorizontaux près de la surface (parfois faisant surface). L'épaisseur des zones varie d'environ 2 à 21 mètres.

« Avec une ressource indiquée de **642 238 tonnes de carbonate de lithium et 9 514 317 livres de** « **Conflict Free** » Ta_2O_5 , Corporation Éléments Critiques a maintenant le potentiel pour devenir un joueur majeur à l'échelle globale de l'approvisionnement en éléments stratégiques. De plus, il y a un fort potentiel d'augmenter considérablement et rapidement les dimensions du gisement à Rose en travaillant les indices à proximité du dépôt Rose, » a souligné Jean-Sébastien Lavallée, le président et chef de la direction de Corporation Éléments Critiques.

ESTIMÉ DE RESSOURCES MINÉRALES – 20 juillet 2011 Critical Éléments Corporation – Projet Rose

Estimé de Ressources du Projet Rose daté du 20 juillet 2011

		Tonnes (x 1,000)	Li₂O équivalent (%)	Li ₂ O (%)	Ta₂O₅ (ppm)	Rb (ppm)	Cs (ppm)	Be (ppm)	Ga (ppm)
	Modèle à ciel ouvert	:					_		
	Zones à lithium	23 800	1,35 %	1,05 %	157	2 410	94	131	67
Indiquées	Zones à tantale	1 900	0,78 %	0,33 %	233	1 592	80	93	54
maiquooo	Modèle sous-terre								
	Zones à lithium	700	0,95 %	0,63 %	171	2 098	85	137	72
	Zones à tantale	100	0,95 %	0,60 %	180	2 404	108	109	63
	Total Indiquées	26 500	1,30 %	0,98 %	163	2 343	92	128	66

		Tonnes (x 1,000)	Li₂O équivalent (%)	Li₂O (%)	Ta₂O₅ (ppm)	Rb (ppm)	Cs (ppm)	Be (ppm)	Ga (ppm)
	Modèle à ciel ouvert Zones à lithium	7 900	1.22 %	0.95 %	143	1 610	77	126	63
Inférées	Zones à tantale	1 100	0,73 %	0,28 %	232	1 079	78	93	54
	Modèle sous-terre			=					-
	Zones à lithium	1 600	1,05 %	0,88 %	90	752	55	116	55
	Zones à tantale	100	0,77 %	0,09 %	355	256	87	27	50
	Total Inférées	10 700	1,14 %	0,86 %	145	1 418	74	121	61

- 1) Les personnes qualifiées et indépendantes pour l'estimation des ressources minérales, tel que défini au Règlement 43-101, sont Pierre-Luc Richard, B.Sc., P. Géo. et Carl Pelletier, B.Sc., P. Géo. (InnovExplo inc.), la date effective de l'estimation des ressources est le 20 juillet 2011. L'estimation des ressources minérales a été complétée en utilisant les normes et définitions prévues par le document intitulé « Definition Standards on Mineral Resources and Mineral Reserves » de l'Institut canadien des mines, de la métallurgie et du pétrole (« ICM ») et en conformité avec le Règlement 43-101 sur l'information concernant les projets miniers.
- 2) Les ressources minérales ne sont pas des réserves minérales ayant démontré une viabilité économique.
- 3) Les résultats sont présentés comme non dilués et « in situ ». Par exemple, des blocs inclus dans la présente estimation des ressources peuvent se retrouver dans des piliers. L'estimation inclut vingt-trois (23) zones (10 zones sont catégorisées à dominance en Lithium et 13 sont catégorisées à dominance en tantale) et couvre la portion forée de Rose et inclus les zones JR et Hydro qui ont été forées. Les sommes dans les tableaux peuvent différer légèrement en raison de l'arrondissement des valeurs.
- 4) La modélisation menant à l'estimation des ressources a utilisé les données de forages de calibre NQ produits par Exploration First Gold (maintenant Corporation Éléments Critiques) en 2009 (10 DDH), en 2010 (148 DDH) et en 2011 (44 DDH) totalisant 202 trous de forages, représentant un total de 4 406 échantillons analysés provenant de 25 201 mètres de forage. La densité a été fixée à 2,71 g/cm³ en se basant sur la moyenne des mesures de densité provenant des zones minéralisées. Une épaisseur minimale de 2,0 mètres a été utilisée, en ayant recours aux résultats du matériel adjacent lorsqu'analysé ou une valeur de zéro lorsque non analysé. Basée sur la statistique, la coupure des hautes teneurs a été établie à 15 000 ppm pour le lithium, 650 ppm pour le tantale, 10 000 ppm pour le rubidium, 600 ppm pour le césium, 900 ppm pour le béryllium, et 150 ppm pour le gallium. Des composites de 1,00 mètre le long de trous ont été utilisés en utilisant des analyses coupées.

- 5) L'estimé de ressource fut compilé en utilisant une teneur de coupure basée sur une « valeur à la tonne » de 41 \$ (modèle de fausse à ciel ouvert) et 66 \$ (modèle sous-terre) basé sur l'estimation des ressources ainsi que les conditions du marché. La « valeur à la tonne » considère une récupération de 64 % pour le lithium et 70 % pour le tantale. Un prix de 6 000 \$/t pour le carbonate de lithium (Li₂CO₃) et un prix de 317 \$/kg pour le tantale furent utilisés (Prix et coûts d'opérations produit par Genivar (étude interne pour Critical Éléments; juin 2011)). Aucun autre élément n'a été inclus dans l'évaluation de la valeur à la tonne. Les teneurs de coupure devront être réévaluées en fonction des fluctuations du prix du lithium et du tantale, le taux de change, les taux de récupération et les coûts de minage. La récupération d'autres éléments pourra aussi être considérée. L'équivalent Li₂0 (Li₂O équivalent) fut établi sur la base des prix du lithium et du tantale et leurs taux de récupération respectifs.
- 6) Aucune ressource minérale mesurée n'a été rapportée. Les ressources minérales indiquées et présumées ont été estimées à partir des résultats de forage en utilisant une approche de modèle de bloc (5 mètres) à l'aide du logiciel Gems 6.2.4 et une interpolation par inverse de la distance au carré. L'interpolation fut contrainte à l'intérieur de vingt-quatre (24) solides tridimensionnels individuels (un des solides n'a produit aucune tonne basée sur les teneurs de coupure retenues).
- 7) Des unités métriques ont été utilisées pour les calculs (mètres, tonnes et ppm). Les résultats ont été arrondis afin de refléter la nature d'estimation qu'ils constituent. Les tonnes sont arrondies à 100 000 et les teneurs en pourcent sont arrondies à deux décimales, alors que les teneurs en ppm sont arrondies au chiffre entier le plus près.

EXTRAITS DU RAPPORT CONFORME À LA NORME 43-101 (EN PRÉPARATION) :

« Les dykes pegmatitiques minéralisés présentent une orientation N296 ainsi qu'un pendage faible vers le nord-est d'environ 15 degrés (localement 5 à 20 degrés). Le dépôt est reconnu sur une longueur de 1 800 mètres et demeure ouvert à ses deux extrémités ainsi qu'en profondeur. »

« En se basant sur les teneurs en lithium et en tantale, le dépôt est, jusqu'à maintenant, uniquement limité par la topographie. Le dépôt est ouvert dans ses deux extrémités latérales au sud-est et au nord-ouest ainsi qu'en profondeur. »

« Le bloc modèle indique que l'ensemble des ressources est présent dans les 300 premiers mètres à partir de la surface, cette limite étant contrôlée par les forages effectués jusqu'à ce jour. »

« Un potentiel considérable d'augmenter le tonnage existe en réalisant du forage additionnel dans les extrémités des pegmatites connues et en profondeur. De plus, le contexte géologique actuellement reconnu suggère qu'il est raisonnable de croire que d'autres dykes minéralisés peuvent être découverts dans l'environnement immédiat. Les auteurs sont d'avis que l'absence de zones entre le secteur de Rose et le secteur de JR est probablement due à l'absence de forage et croient que ce secteur devrait être foré afin de connecter les deux secteurs actuellement forés. »

Différentes teneurs de coupure ont été calculées. Bien que les teneurs de coupure de 41 \$/t (modèle fausse à ciel ouvert) et 66 \$/t (modèle sous-terre) soient les teneurs de coupure officielles de ces ressources (prenant la récupération en considération), d'autres scénarios sont présentés dans les tableaux ci-après :

Modèle à ciel ouvert (Ressources Indiquées)

	Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga
	\$ 26.00	24 300	126	4 775	128	2 387	93	129	67
	\$ 31.00	24 100	127	4 811	128	2 398	93	130	67
	\$ 36.00	24 000	127	4 833	129	2 404	93	130	67
	\$ 41.00	23 800	128	4 867	129	2 410	94	131	67
Zones à Li	\$ 46.00	23 400	130	4 938	129	2 414	94	132	67
	\$ 51.00	23 000	131	4 994	130	2 421	94	132	68
	\$ 56.00	22 600	132	5 057	130	2 423	94	133	68
	\$ 61.00	22 400	133	5 090	130	2 428	94	133	68
	\$ 66.00	21 900	134	5 164	130	2 436	95	134	68
	\$ 71.00	21 400	136	5 245	130	2 444	95	134	68

Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	\$/tonne (Li ₂ O+Ta ₂ O ₅)	
1.03 %	156	1.33	\$ 126.01	
1.04 %	157	1.34	\$ 126.82	
1.04 %	157	1.34	\$ 127.31	
1.05 %	157	1.35	\$ 128.06	
1.06 %	158	1.36	\$ 129.56	
1.08 %	158	1.38	\$ 130.83	
1.09 %	159	1.39	\$ 132.20	
1.10 %	159	1.40	\$ 132.91	
1.11 %	159	1.42	\$ 134.48	
1.13 %	159	1.43	\$ 136.17	

		(BV \$)	(X 1 0
		\$ 26.00	2 70
		\$ 31.00	2 40
		\$ 36.00	2 20
		\$ 41.00	1 90
Zones à Ta		\$ 46.00	1 60
		\$ 51.00	1 50
		\$ 56.00	1 30
		\$ 61.00	1 10
	ı		

	Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga
	\$ 26.00	2 700	62	1 142	172	1 480	74	88	51
	\$ 31.00	2 400	66	1 260	180	1 525	77	91	52
	\$ 36.00	2 200	69	1 358	185	1 528	78	91	52
	\$ 41.00	1 900	74	1 530	191	1 592	80	93	54
,	\$ 46.00	1 600	79	1 741	198	1 664	81	92	55
	\$ 51.00	1 500	82	1 816	201	1 700	82	94	55
	\$ 56.00	1 300	87	1 959	210	1 757	84	94	56
	\$ 61.00	1 100	92	2 087	223	1 841	87	95	58
	\$ 66.00	900	98	2 335	228	1 862	91	98	60
	\$ 71 00	700	105	2 634	231	1 828	94	96	62

Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	\$/tonne i ₂ O+Ta ₂ O ₅)
0.25 %	210	0.65	\$ 61.52
0.27 %	220	0.69	\$ 65.72
0.29 %	226	0.73	\$ 68.90
0.33 %	233	0.78	\$ 73.70
0.37 %	241	0.84	\$ 79.44
0.39 %	245	0.86	\$ 81.64
0.42 %	256	0.91	\$ 86.53
0.45 %	273	0.97	\$ 92.19
0.50 %	279	1.04	\$ 98.38
0.57 %	282	1.11	\$ 105.09

Modèle à ciel ouvert (Ressources Inférées)

	Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga
	\$ 26.00	8 100	113	4 277	117	1 601	76	124	62
	\$ 31.00	8 000	114	4 321	117	1 606	76	125	62
	\$ 36.00	8 000	115	4 355	117	1 609	77	126	63
	\$ 41.00	7 900	116	4 400	117	1 610	77	126	63
Zones à Li	\$ 46.00	7 700	117	4 455	118	1 612	77	128	63
	\$ 51.00	7 600	118	4 496	118	1 616	77	128	63
	\$ 56.00	7 500	119	4 552	118	1 616	78	129	63
	\$ 61.00	7 300	121	4 618	118	1 615	78	130	64
	\$ 66.00	7 100	122	4 693	118	1 622	78	131	64
	\$ 71.00	7 000	123	4 754	119	1 629	78	132	64

Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	\$/tonne i ₂ O+Ta ₂ O ₅)
0.92 %	143	1.19	\$ 113.33
0.93 %	143	1.20	\$ 114.30
0.94 %	143	1.21	\$ 115.02
0.95 %	143	1.22	\$ 115.95
0.96 %	143	1.23	\$ 117.13
0.97 %	144	1.24	\$ 118.03
0.98 %	144	1.26	\$ 119.23
0.99 %	144	1.27	\$ 120.61
1.01 %	145	1.29	\$ 122.20
1.02 %	145	1.30	\$ 123.49

	Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga
	\$ 26.00	1 700	57	999	164	1 008	71	92	50
	\$ 31.00	1 500	60	1 095	171	1 043	75	96	52
	\$ 36.00	1 200	65	1 231	182	1 082	76	94	53
	\$ 41.00	1 100	69	1 313	190	1 079	78	93	54
Zones à Ta	\$ 46.00	1 000	72	1 374	197	1 051	79	92	55
	\$ 51.00	900	75	1 439	205	1 068	80	93	56
	\$ 56.00	700	79	1 526	217	1 074	83	93	58
	\$ 61.00	600	84	1 614	231	1 065	89	97	60
	\$ 66.00	500	87	1 666	237	1 040	90	100	61
	\$ 71.00	400	90	1 782	241	1 008	91	104	61

Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	S/tonne i ₂ O+Ta ₂ O ₅)
0.22 %	200	0.60	\$ 56.85
0.24 %	209	0.64	\$ 60.36
0.26 %	222	0.69	\$ 65.47
0.28 %	232	0.73	\$ 68.97
0.30 %	241	0.76	\$ 71.83
0.31 %	250	0.79	\$ 74.85
0.33 %	265	0.83	\$ 79.26
0.35 %	282	0.89	\$ 84.15
0.36 %	289	0.91	\$ 86.58
0.38 %	295	0.95	\$ 90.01

Modèle sous-terre (Ressources Indiquées)

	Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga
	\$ 41.00	1 300	72	1 955	143	1 911	89	110	64
	\$ 46.00	1 100	76	2 108	147	2 000	87	116	67
	\$ 51.00	1 000	79	2 266	147	2 078	87	122	68
	\$ 56.00	800	85	2 640	138	2 104	88	131	71
Zones à Li	\$ 61.00	800	86	2 733	136	2 115	86	133	71
	\$ 66.00	700	90	2 909	140	2 098	85	137	72
	\$ 71.00	600	94	3 073	141	2 076	84	139	72
	\$ 76.00	500	100	3 522	125	2 023	84	139	71
	\$ 81.00	400	102	3 679	119	1 999	80	140	71
	\$ 86.00	300	108	3 961	123	2 124	83	142	72

Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	\$/tonne (Li ₂ O+Ta ₂ O ₅)
0.42 %	174	0.75	\$ 71.65
0.45 %	179	0.80	\$ 75.61
0.49 %	180	0.83	\$ 78.95
0.57 %	169	0.89	\$ 84.70
0.59 %	167	0.91	\$ 86.14
0.63 %	171	0.95	\$ 90.48
0.66 %	172	0.99	\$ 94.10
0.76 %	152	1.05	\$ 99.68
0.79 %	145	1.07	\$ 101.64
0.85 %	150	1.14	\$ 108.16

	Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga
	\$ 41.00	400	57	1 049	159	1 712	75	106	54
	\$ 46.00	200	75	2 114	145	2 016	92	95	57
	\$ 51.00	100	80	2 351	146	2 153	97	100	59
	\$ 56.00	100	84	2 548	144	2 282	103	104	61
Zones à Ta	\$ 61.00	100	88	2 692	147	2 377	107	108	63
	\$ 66.00	100	90	2 801	148	2 404	108	109	63
	\$ 71.00	100	93	2 912	150	2 423	110	111	65
	\$ 76.00	100	96	3 089	148	2 404	108	113	65
	\$ 81.00	100	102	3 411	147	2 253	103	115	66
	\$ 86.00	0	106	3 596	147	2 215	102	117	66
		•							

Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	\$/tonne i ₂ O+Ta ₂ O ₅)
0.23 %	195	0.60	\$ 56.84
0.46 %	177	0.79	\$ 75.38
0.51 %	178	0.85	\$ 80.38
0.55 %	176	0.89	\$ 84.12
0.58 %	179	0.92	\$ 87.61
0.60 %	180	0.95	\$ 90.03
0.63 %	183	0.98	\$ 92.83
0.67 %	181	1.01	\$ 96.07
0.73 %	179	1.08	\$ 102.32
0.77 %	179	1.12	\$ 106.07

Modèle sous-terre (Ressources Inférées)

		Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga		Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	\$/tonne (Li ₂ O+Ta ₂ O ₅)
		\$ 41.00	2 500	83	3 252	75	738	57	102	51		0.70 %	92	0.88	\$ 83.12
		\$ 46.00	2 300	87	3 435	77	762	56	108	52		0.74 %	94	0.92	\$ 87.25
		\$ 51.00	2 100	90	3 550	77	760	56	110	53		0.76 %	95	0.95	\$ 89.75
		\$ 56.00	1 900	93	3 779	73	758	56	113	53		0.81 %	89	0.98	\$ 93.50
	Zones à Li	\$ 61.00	1 800	96	3 897	73	753	56	114	54		0.84 %	89	1.01	\$ 95.79
		\$ 66.00	1 600	99	4 066	74	752	55	116	55		0.88 %	90	1.05	\$ 99.47
		\$ 71.00	1 400	105	4 336	72	739	54	117	55		0.93 %	88	1.10	\$ 104.61
		\$ 76.00	1 200	108	4 519	72	733	53	119	56		0.97 %	88	1.14	\$ 108.37
		\$ 81.00	1 100	111	4 684	70	680	51	119	56		1.01 %	86	1.17	\$ 111.34
		\$ 86.00	1 000	115	4 884	69	645	50	119	56		1.05 %	84	1.21	\$ 115.10
				ſ	r			_			1				
		Coupure (BV \$)	Tonnage (X 1 000)	BV(\$)	Li	Ta	Rb	Cs	Ве	Ga		Li ₂ O (%)	Ta ₂ O ₅ (ppm)	Li ₂ O équivalent (%)	\$/tonne (Li ₂ O+Ta ₂ O ₅)
		\$ 41.00	400	50	623	168	586	53	95	47		0.13 %	205	0.53	\$ 50.00
		\$ 46.00	200	57	1 015	164	612	64	87	47		0.22 %	200	0.60	\$ 57.17
		\$ 51.00	200	60	914	186	686	67	78	48		0.20 %	228	0.63	\$ 60.06
		\$ 56.00	100	70	724	247	477	79	41	48		0.16 %	301	0.73	\$ 69.57
	Zones à Ta	\$ 61.00	100	72	568	272	402	84	33	50		0.12 %	332	0.76	\$ 71.90
		\$ 66.00	0	73	425	291	256	87	27	50		0.09 %	355	0.77	\$ 73.26
		\$ 71.00	0	75	394	300	162	89	23	49		0.08 %	366	0.79	\$ 74.64
		\$ 76.00	0	81	533	317	18	50	31	55		0.11 %	387	0.85	\$ 81.15
			1	1	1	1	1	l		l	l	1		ĺ	

88.26

92.23

0.97

À PROPOS DE CORPORATION ÉLÉMENTS CRITIQUES :

Corporation Éléments Critiques travaille activement au développement de son important projet de lithium-tantale, situé au Québec et détenu à 100 %. Le projet contient actuellement une nouvelle ressource conforme au règlement 43-101 de 26.5 MM de tonnes indiquées à une teneur de 1,30 % Li₂O Eq. ou 0,98 % Li₂O et 163 ppm Ta₂O₅ et 10.7 MM tonnes inférées à une teneur de 1,14 % Li₂O Eq. ou 0,86 % Li₂O et 145 ppm Ta₂O₅ annoncées dans ce communiqué de presse.

Corporation Éléments Critiques a mandaté, Genivar, l'une des plus grandes firmes d'ingénierie indépendantes au Canada, afin de réaliser son étude de préfaisabilité ainsi que son étude environnementale. La firme Acme Metalurgical Ltd, de Vancouver s'occupe quant à elle de la métallurgie du projet.

Le portfolio de la Société inclut aussi des projets de terres rares, niobium et tantale dans les montagnes Rocheuses en Colombie-Britannique, des projets de terres rares, de tantale et de niobium au Québec ainsi qu'une participation de 50 % dans le projet Croinor situé au Québec, lequel contient des ressources mesurées et indiquées conformes au règlement 43-101 de 814 228 tonnes à 9,11 g/t Au pour 238 414 onces d'or à une teneur de coupure de 5 g/t Au.

Jean-Sébastien Lavallée (OGQ # 773), géologue, actionnaire, président et chef de la direction de la Société et personne qualifiée selon le règlement 43-101, a révisé et approuvé le contenu technique du présent communiqué.

Pour de plus amples informations, contacter : Jean-Sébastien Lavallée, P. Géo Président et chef de la direction 819-354-5146

Relations publiques Paradox 514-341-0408

Ni la Bourse de croissance du TSX ni les autorités réglementaires (telles que définies par les politiques de la Bourse de croissance du TSX) n'ont accepté de responsabilité pour l'exactitude et la précision du présent communiqué.